SatHub: Satellite software tools for the community

Mike Peel on behalf of IAU CPS SatHub Meredith Rawls, Siegfried Eggl, Michelle Dadighat

(Postdoc, Imperial College London)

Swiss SKA Days, 26 August 2025

Space is changing rapidly

- 8500+ satellites in Low Earth Orbit
- ITU filings for >1,000,000 satellites
- Major concerns:
 - Effects on optical astronomy
 - Effects on radio astronomy
 - Effects on the night sky
 - Space traffic management
 - Space debris

Effects on astronomy

Optical astronomy: Satellite streaks can cause unusable data

Credit: CTIO/NOIRLab/NSF/AURA/Decam DELVE Survey

Radio astronomy:

- Intentional emissions (i.e. strong downlinks)
- UEMR (unintentional electromagnetic radiation)

Credit: SKAO

Four hubs

SatHub

 Satellite observation and data analysis to understand problem + find mitigations during data processing

Industry & Technology Hub

Foster collaboration between the astronomy and satellite operator communities

Policy Hub

Studies national and international policies and regulations related to the use of space

Community & Engagement Hub

Bridge between all involved stakeholders and affected communities

IAU CPS SatHub Aims (see Connie's talk)

- Assess constellation impact on optical and radio astronomy via independent observation campaigns and peer reviewed publications
- Strengthen relations with key players:
 Privateer, The Exclosure, Slingshot Aerospace, European Centre for Space Safety, The Aerospace Corporation, AST SpaceMobile, SpaceX, Amazon Kuiper, Planet Labs, and more
- Develop mitigation tools for astronomers/observatories
 - SatChecker satellite position prediction service (also connections with Satellite Orbit Prediction Processor/SOPP under development)
 - Satellite Constellation Observation Repository (SCORE)
 - NSF SWIFT-Sat: Field-Of-View / active satellite avoidance service
 - Radio astronomy impact modeling (SCEPTER)
- Coordinate mitigation efforts with all stakeholders

AST SpaceMobile Bluewalker 3 observations

- 64m² phased array, prototype for mobile phone connections using standard phones + satellite
- Observing campaign to observe with multiple telescopes + visual observers
- Optical measurements show it to be brighter than all except top 10 stars (Nandakumar et al., Nature, 2023)
- + launch vehicle adapter bright & untracked for first few days
- + position predictions degrade over time
- 5 BlueBirds since, more (and larger) expected soon...

Potential impact at radio frequencies

- Active 10-20GHz transmissions plus 40GHz, 120-180GHz soon? (and octaves!)
 - Each satellite constellation using different frequencies? Important to minimise frequency use...
- Sidelobe coupling also a concern, particularly for CMB experiments
- Difficult to filter out with broadband detectors, unless using FPGAs
- Satellites highly variable need to accurately know positions, or see as transients?
- Protected radio bands v. narrow observations normally use broader unprotected bandwidths

Above: QUIJOTE 10-14GHz observations from

Tenerife in 2014 and 2024

Left: satellite dish

observations, F. Di Vruno

Thermal Emission

Even if not actively emitting RF signal, satellites can be millimeter bright!

Mitigations: Satellites

- Fewer satellites
- Materials engineering: coatings (specular reflectivity)
- Attitude control (minimise reflections)
- Reflectivity simulation and testing labs (growing need)
- Steerable radio beams (enable direct illumination avoidance)
- Minimise sidelobe emission
- Control of unintended electromagnetic radiation

Mitigations: Telescopes

- Observations planning
- Software to avoid satellites
- Closing telescope shutter when satellite overhead
- More resilient receivers
- Observations to verify mitigations
- Redoing observations
- Modelling / Simulations
- Post processing of data (masking)

- API for predicting satellite positions and transits
- Single satellite or field of view (FOV) predictions
- Define RA/Dec center, radius, and time window, get all satellites overhead at a given time/location
- Access to archival TLE data
 - Current: 69,437,098 TLEs, satellites back to April 2019, rocket bodies back to September 2023
 - Archive: 208,651,537 TLEs, all Celestrak TLEs back to 1959
- Provides satellite metadata: NORAD ID, COSPAR
 ID, launch/decay dates, etc.
- API docs: <u>https://satchecker.readthedocs.io/en/latest/</u>

 https://satchecker.cps.iau.org/api/docs/

SatChecker Ephemeris API Documentation

View page source

SatChecker Ephemeris API Documentation

Overview

SatChecker is a satellite position prediction tool from the IAU CPS (IAU Centre for the Protection of the Dark and Quiet Sky from Satellite Constellation Interference) SatHub group. It uses TLEs (two-line element sets) from Celesīrak and Space-Track to provide predictions of satellite positions at a given time and location. It also provides additional information like range, on-sky velocity, and an "illuminated" flag for each prediction point.

SatChecker uses the TLE with the closest epoch date available to the date specified in the API parameters - currently available TLEs go back to July 2019. General TLE data is updated daily, and supplemental TLEs from Celesfrak are updated every 8 hours.

The SatChecker Tools API provides additional functionality for satellite name and ID lookup, as well as the ability to retrieve all available TLE data for a given satellite over a given date range. Satellites can be assigned temporary IDs after launch, and names are subject to change, so the Tools API can be used to keep track of these changes.

Support

For assistance with SatChecker, please open an issue on the GitHub

SatChecker Field of View service

- Satellite Constellation Observation Repository
- Brightness and position data repository
- Centralized place to store/link observation campaign data & other measurements of satellite brightnesses
- Provide data to operators and for simulations of satellite interference
- Collect observational data to support and improve satellite brightness models
- Observation format CSV with specific headers
- Required: observation time (and uncertainty) observation location, apparent magnitude (and uncertainty), observing mode/filter/instrument
- Optional: RA/Dec position with uncertainties, range and range rate, comments
- Reference data from SatChecker added to each data point, including checking that the satellite was visible

SatChecker + SCORE cross-validation

SatChecker + Rubin observations

ENERGY Office of Science

https://community.lsst.org/t/rrb-satellite-constellations-and-lsst-new-tools-and-impact-assessments/10729

Next steps

- TLEs have limited precision, no uncertainties, can miss maneuvers more validation needed
- Need more observational data in SCORE!
 - Particularly Starlink (can then see if Starlink's supplementary TLEs are more accurate)
 - o If you have observational data, please upload it!
- Interpolating ephemeris data (which has covariances) may be more accurate - starting with Starlink with this.
- Satellite brightness estimates
- FOV/observation interference alerts; Web UI for SatChecker; additional orbital data sources; asynchronous queries (long running ones)
- Data repository for radio observations of satellites
- Standardized data format for radio observation submissions
- API support for uploading observations
- Coordination on converting and uploading existing datasets
- With particular thanks to Michelle Dadighat for developing these tools!

Recent observations

Jun. 19, 2025 01:53 PM - KUIPER-00030 Jun. 19, 2025 01:53 PM - KUIPER-00019 Jun. 19, 2025 01:53 PM - KUIPER-00019 Jun. 19, 2025 01:53 PM - KUIPER-00019

Statistics

29582 observations 458 satellites 17 observers

Observer Map

Thanks for listening!

Questions?

Join CPS!

https://cps.iau.org

