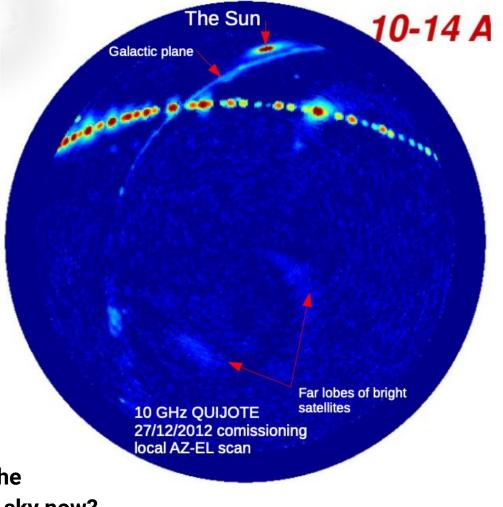


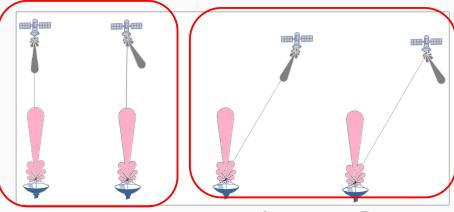





Example of what we want to observe: the cosmic Microwave Background (full sky, in intensity, from the Planck Satellite—polarisation fainter)




What we actually see: all sky at ~20 GHz combining Planck+WMAP satellites Large scale polarised Synchrotron emission (similar at high freq from dust emission)


#### What we really see

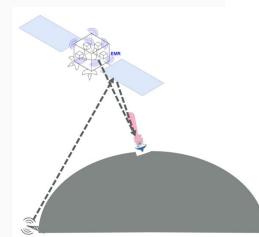
- 10−14 GHz local sky from Tenerife
- The Sun, our Galaxy, ...
- Geostationary satellites!
  - Brighter than the sun!
- Satellite signals reflected from the edges of the dish
  - Using special telescopes to minimise sidelobes! Adding extra baffles reduced this.
- This was 2012...
- Satellite numbers now doubled
- Restarting observations this year...

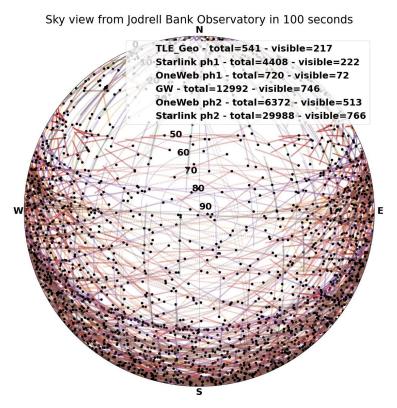
Will we see the equivalent of the geostationary band everywhere in the sky now?



#### What we might see?




**High power Prx** 


**Direct transmissions**, in main beam or sidelobes

**Unintentional emission** from satellite or reflections

**Satellites everywhere** in the sky all of the time

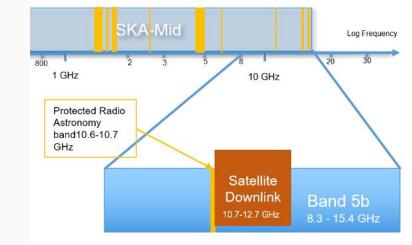
**Low power Prx** 





Figures courtesy Federico Di Vruno

### Why is there a problem (part 1)?


- Radio frequencies regulated by ITU-R
- Includes protected radio astronomy bands
  - Mostly for spectral lines, narrow bands
- Astronomy is 'passive' normally no transmissions to detect faint signals
- Most other uses are 'active' transmissions with high power
- Transmissions can also 'leak' into unintended bands
  - Has happened with constellations like Iridium
  - 10.6-10.7GHz band protected, 10.7+ used for Starlink etc...
- Local radio quiet zones: no transmitters/mobiles, sometimes cars/cameras banned!
  - Basically: have telescopes as far away from people, and in protected areas!

#### Why is there a problem (part 2)?

- We observe broad frequency ranges (reserved bands very narrow)
  - Sensitivity goes as sqrt(bandwidth x integration time)
  - Can only see some phenomenon at some freqs (spectral lines, spinning dust, ...)
- We survey large sky areas to observe earliest moments (largest scales) in the Universe
- We need high sensitivity to observe very faint signals
  - Using 10,000+ pixels (large focal planes—unprecedented at radio frequencies!)
  - Observe for multiple years
  - Even signals in sidelobes can cause significant problems
- Previously could avoid interference by going to remote parts of the planet
  - Radio quiet zones don't include satellites...
  - >10 GHz frequencies mostly clear free of interference—until now!

#### What will be impacted?

- Big radio projects running or being planned:
- CMB: CMB-S4 (\$700m), GroundBIRD (>\$3m),
   QUIJOTE (>€10m), ...—Single dishes with
   0.1% sidelobes: still see satellites in sidelobes



- Interferometers: Square Kilometer Array (\$1b?), ALMA (\$1.4b), VLA (>\$100m), eMerlin (> £50m), VLBI (>\$50m) see satellites at 500 km with 1000 km separated telescopes!
   Super-bright signals (even out of band) can make receivers go non-linear, losing observation time (and maybe even damaging receivers)
- Single dishes: Sardinia (>€70m), Green Bank (>\$95m), Effelsberg (>€50m)
- Multi-frequency surveys (separate different astronomical components via frequency)

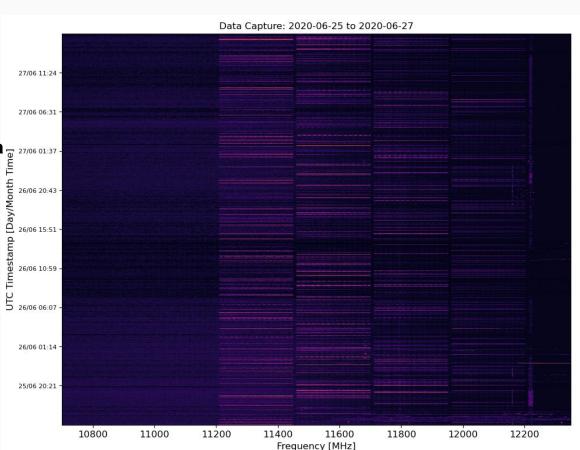
(All cost estimates are approximate based on public info)

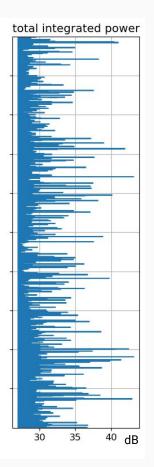
### What do signals look like? (small dish)

Presumed **Starlink** satellites

Single pointing direction

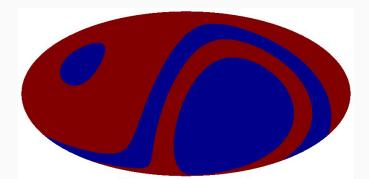
11.2-12.2GHz data

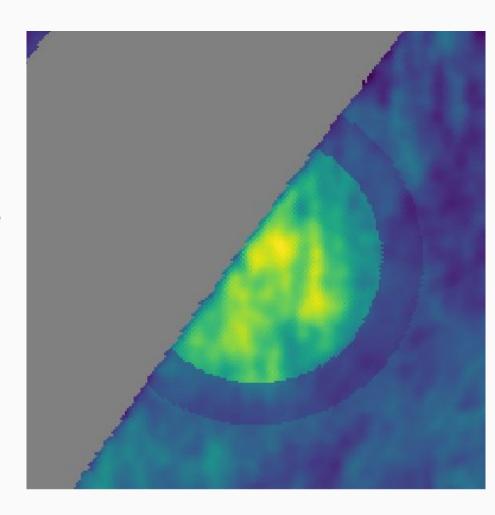

badly


contaminated
(1GHz band!)

Variable (due to satellite movement)

This is over 1.5 days


Thanks to Federico Di Vruno (SKAO)






#### Real on-sky impact?

- Zeta Ophiuchus
- Complex to understand (mix of free-free, sync, maybe AME, acts as Faraday screen, ...)
- Seems to have more high-freq signal than expected (but not spinning dust?)
- Multi-freq component separation would be nice
- But we only see half the source with QUIJOTE—thanks GEO sats! Have to mask ~10° around dec=0° (~100% data loss).
- (Maybe could be filled in with a southern telescope—but \$\$\$!)





## What astronomers can do (1/2)

- Use digital backends to split broadband receivers into narrow frequency channels
  - Can be selective about received frequencies within bandwidth
  - Expensive! Particularly at high frequencies.
  - Can only be used for some receivers (not bolometers/KIDs/etc.)
  - Depending on satellite transmissions, may still lose a lot of bandwidth
- Avoid looking at satellites
  - Need to predict where satellites will be, and actively steer around them.
  - Difficult for survey telescopes scanning at fixed elevations
  - Sidelobes still an unavoidable issue

#### What astronomers can do (2/2)

#### Early observations

- Feedback to satellite operators to minimise bandpasses/sidelobes
- Knowing out-of-band transmissions from satellites particularly important (e.g., see Iridium transmissions in protected radio astro band!)
- Share observations within radio astro community

#### Observe for longer

- Estimates depend on bandwidth and time lost, but perhaps 50% longer.
- Construction costs same—but more maintenance/running costs.
- Huge impact on costs of observing and analysis/scientist time (varies between projects, can easily be >50% of telescope costs—or more!)

#### What we need others to do

- Narrower frequency bands and strict control of out-of-band signals (& tested!)
  - Best thing that can be done—but remember out-of-band leakage!
     (simulated impact from GPS on 21cm: Harper & Dickinson, arXiv:1803.06314)
- Fewer satellites (and less duplication of coverage)
  - Turn them off when passing over all radio telescopes (pro & amateur)
  - Current situation time-consuming + painful, ~100,000 satellites impossible!
- Steerable beams? (Avoid telescopes, or just cause worse sidelobes?)
  - Need to confirm how this impacts telescopes in reality.
- Fainter transmissions (lower power—and stable!)
- More publicly available information (via SatHub?)
  - Bandpasses/transmission frequencies (from measurements)
  - Accurate position predictions

# New IAU Centre for the Protection of the Dark and Quiet Sky from Satellite Constellation Interference.

Led by **NOIRLab** (USA) and **SKAO** (UK), with 'Contributing Members' and 'Affiliated Members' Now **open for membership!**.

Director: Piero Benvenuti. Co-directors by Connie Walker & Federico Di Vruno. Four hubs:

- SatHub (leads: Meredith Rawls, Mike Peel)
  - Collection & analysis of satellite observations
  - Software tools
  - Training + outreach
- Policy (leads: Andrew Williams, Richard Green)
  - Coordinate policy action & diplomacy
- Community Engagement (leads: John Barentine, Jessica Heim): beyond professional astronomers
- Industry and Technology (leads: Chris Hofer, Tim Stevenson): engaging industry









https://cps.iau.org/

