# Mapping large angular scales at radio frequencies

Mike Peel

Next-generation cosmological surveys workshop 16 June 2022

# Part 1: BINGO

### Mike Peel, on behalf of the BINGO collaboration

Next-generation cosmological surveys workshop 16 June 2022

#### Collaboration (Brasil, UK, China + others)

#### University of São Paulo, Brazil

- Elcio Abdalla [Professor, Core (P.I.)]
- Elisa Ferreira [Professor, Builder]
- Alessandro Marins [PhD., Builder]
- Andreia Pereira de Souza [Technician, Support]
- Carlos Otobone [Undergrad., Team]
- Gustavo B. Silva [MSc., Team]
- · Jordany Vieira [PhD., Team]
- Juliana F. R. dos Santos [Undergrad., Team]
- Karin Fornazier [Pos-doc, Builder]
- · Pablo Mota [PhD., Team]
- Rafael M. G. Ribeiro [MSc., Team]

#### Instituto Nacional de Pesquisas Espaciais, Brazil

- Carlos Alexandre Wuensche [Professor, Core]
- Thyrso Villela [Professor, Core]
- Camila Paiva Novaes [Pos-doc, Builder]
- Cesar Strauss [Technician, Team]
- Eduardo Mericia [PhD., Team]
- Frederico Vieira [PhD., Team]
- Luiz Reitano [Technician, Support]
- Telmo Machado [Technician, Support]
- Vincenzo Liccardo [Pos-doc, Builder]

#### Universidade Federal de Campina Grande, Brazil:

- · Luciano Barosi [Professor, Core]
- Amilcar Queiroz [Professor, Core]
- Francisco Brito [Professor, Core]
- · Alexandre Jean René Serres [Professor, Team]
- · Edmar Candeia Gurjão [Professor, Team]
- João Rafael Lucio dos Santos [Professor, Team]
   Marcelo Vargas dos Santos [Professor, Builder]
   Victor I. Afonso [Professor, Team]

University College London, UK

• Filipe Abdalla [Professor, Core]

#### University of Manchester, UK

- Chris Radcliffe [Technician, Team]
   Clive Dickinson [Professor, Team]
- Ian Browne [Professor, Team]
- Mathieu Remazeilles [Pos-doc, Team]
- Richard Battye [Professor, Team]
- Stuart Harper [Pos-doc, Team]

Technische Universität München, Germany • Ricardo Landim [Pos-doc, Builder]

Max Planck Institute, Germany • Elisa Ferreira [Professor, Builder]

Instituto de Astrofísica de Canarias, Spain • Mike Peel [Pos-doc, Team]

#### University of Roma, Italy • Giancarlo de Gasperis [Professor, Team]

Laboratoire AstroParticule et Cosmologie, France • Jacques Delabrouille [Professor, Team]

Institut d'Astrophysique Spatiale, France • Bruno Maffei [Professor, Team]

ETH Zurich, Switzerland • Christian Monstein [Professor, Team]

#### Center for Gravitation and Cosmology, Yangzhou University, China

- Bin Wang [Professor, Core]
- André Costa [Professor, Builder]
- · Larissa Santos [Professor, Builder]
- · Xue Zhang [Professor, Team]
- Yu Sang [Professor, Team]

#### School of Physics and Astronomy, Shanghai Jiao Tong University, China

- Bin Wang [Professor, Core]
- Chenxi Shan [PhD, Team]
- · Haiguang Xu [Professor, Team]
- · Linfeng Xiao [PhD, Team]
- Yongkai Zhu [PhD, Team]
- · Zhenghao Zhu [PhD, Team]

#### University of Science and Technology of China

Cheng Feng [Professor, Team]

Liao Ning Normal University, China • Weigiang Yang [Professor, Team]

CTPU Institute for Basic Science, Korea • Jiajun Zhang [Pos-doc, Builder]

#### bingotelescope.org

Publications at bingotelescope.org/results/

#### Science goals

Use Intensity Mapping to statistically detect galaxies

Measure Baryon Acoustic Oscillations from H1 21cm line

Constrain cosmological parameters, particularly dark energy, in the redshift range 0.1-0.5

(Also measure a lot of foreground emission - but want to subtract that!)

(See Tianyue's talk earlier at this meeting!)





### Design

40m-class crossed-dragone radio telescope (original design on the right)

Very clean optics - necessary for accurate foreground separation

~0.5° resolution on the sky (optimal resolution - like CMB telescopes)

Large focal plane (~15x15°)

Huge horns: 1.8x4.7m feed



displacement



#### Scan strategy

WiggleZ

COSMOS

Completely static telescope! (a lot cheaper + fewer systematics)

Requires very good receiver stability (low 1/f and/or correlation receivers)

Use Earth rotation to map 360° in RA

Use large focal plane to get ~15° declination

Centered around -15° dec





### Site selection

Requires very low RFI - far away from everyone!

Mobile phone signal covers a lot of brazil!

Can't avoid aircraft or GPS satellites...

(Peel et al. 2019)





### Timeline

2012: Project conception (Battye et al.)

2016: Project funded (FAPESP)

2018: Site selected

2019: Site clearance started

2020: horn/front end production

2021: Mirrors funded (Paraíba)

2021: Outrigger in operation

2022: Construction funded (FINEP)

2022: Start of construction

2023: Commissioning

2023-2028: Survey (phase 1)



# Part 2: GroundBIRD

Mike Peel, on behalf of the GroundBIRD collaboration Next-generation cosmological surveys workshop 16 June 2022

### Collaboration (Japan, Korea, Spain, Netherlands)

**RIKEN:** Chiko Otani (PI), Satoru Mima, Shugo Oguri (now at JAXA), Hiroki Kutsuma

**Kyoto University:** Osamu Tajima, Takuji Ikemitsu, Junta Komine, Junya Suzuki, Yoshinori Sueno, Soichiro Takeichi

**KEK:** Masashi Hazumi, Hikaru Ishituka, Tomohisa Uchida, Mitsuhiro Yoshida, Taketo Nagasaki

NAOJ: Makoto Nagai, Yutaro Sekimoto (now JAXA)

**Tohoku University:** Makoto Hattori, Tomonaga Tanaka, Miku Tsujii

**University of Tokyo:** Kenji Kiuchi, Makoto Minowa, Nozomu Tomita, Hidesato Ishida, Yuta Tsuji

**Saitama University:** Ryo Koyano, Masato Naruse, Munehisa Semoto, Toru Taino

**Korea University:** Eunil Won, Kyungmin Lee, Yonggil Jo, Hoyong Jeong

KASI: Jihoon Choi SRON: Kenichi Karatsu

**IAC:** Ricardo Génova-Santos, Mike Peel, Rafael Rebolo, José Alberto Rubiño-Martín, Victor Gonzalez Escalera, Shunsuke Honda (now at University of Tsukuba)



### Science goals

- High sensitivity measurements of largest angular scales from ground (*l* = 6–300)
- B-modes: tensor-to-scalar ratio, *r*, *to*  $\sigma_r < 0.01$  (Current best limit from BICEP <0.036  $2\sigma$ )
- E-modes: optical depth to reionisation,  $\tau$ , to  $\sigma_{\tau} < 0.03$  (gives the epoch at which the universe became ionised: higher value = earlier known to 0.0073 from Planck but systematics?)
- Polarised thermal dust emission amplitude + spectral properties
- Northern hemisphere observations
  - Complementary to South observations
  - Understanding full sky foregrounds is important for satellite observations



From Honda et al. (2020) (Mike: explain this!)

#### Foregrounds

- GroundBIRD sees CMB + thermal dust (intensity + polarisation)
- cf. QUIJOTE seeing CMB + synchrotron (I+P) + free-free + AME
- Need multi-frequency analysis to accurately remove foregrounds + extract CMB



### **Specifications**

- Focal plane at <0.3K (sorption cooler, PTC)
- KIDS detectors at 145GHz, 220GHz
  - 7 x 23 pixel array: 161 total
  - 6 x 150GHz arrays, 1 x 220GHz array
- 40 cm cooled (4K) cross-dragone mirrors
- Resolution around 0.5°/0.3° (145/220GHz)



#### The GroundBIRD telescope



### Stability for large angular scales

- Large angular scales  $\rightarrow$  need to minimise 1/f
- Continuous very fast spin: 20r.p.m. at fixed elevation (~60-90°)
  - Cuts out any 1/f on timescales longer than 3 seconds (360° rotation) or better (destriping)
- Fast MKID detectors
- Lots of magnetic shielding around cryostat
  - (MKIDs can be affected by Earth's magnetic field)
- Very stable cryo temperatures during operations
  - (exception being daily regeneration of sorption cooler for ~3 hours)
- Humidity in dome controlled
- Dome inside ground shield
  - (sheltered from weather, ground radiation)



PTC cycle and sub-harmonics



From Jihoon Choi (PhD thesis)

#### Observations

- CMB area at Teide Observatory (in use since 1984!)
- Installed next to QUIJOTE (see Alberto's presentation)
- New dome inside former
   Very Small Array enclosure
- 2400m, median PWV 3.8mm
- (Cloud level is mostly ~1500m)
- 28.3°N, 60° elevation → declinations -1.7° to +58.3°
- Instantaneous field of view ~10x10°
- Using Earth rotation, will map ~50% of the sky

![](_page_14_Picture_9.jpeg)

### Calibration - moon observations

- Moon: bright calibrator, easy to observe
- Observe when rising/setting at fixed elevations (normally 70°)
- Example plot on the right!
- Using SRON 145GHz detector
- (22 only antennas, 4 + lenslets)
- + telescope pointing (looking good!)

![](_page_15_Figure_7.jpeg)

#### LT221-4pix moon (2021-0801)

![](_page_15_Picture_9.jpeg)

200x200 pix

'/pix,

ŝ N

#### Forecast of cosmological parameters

- Lee et al., "A forecast of the sensitivity on the measurement of the optical depth to reionization with the GroundBIRD experiment", ApJ, 915, 88, arXiv:2102.03210
- (See CosmoGlobe talk last year for details!)
- Forecast sensitivity: 110uK arcmin at 150GHz, 780uK arcmin at 220GHz
- Uncertainty on  $\tau$  of 0.03 with GB only
- Reduces to 0.012 including QUIJOTE
- (Complicated bit is foregrounds!)

![](_page_16_Figure_7.jpeg)

#### **Current status**

- Fully remote observations started!
  - Automatic dome open/close, rotation start/stop
  - (lots of work to automate + make safe/secure)
- Currently observing at 70°
  - (need to tweak helium pipes to go to lower elevation, can to to 60° in principle - limited by PTC/sorption cooler tilt angles.)
- (Actually, we broke an elevation axis during crane work last month ... currently fixing, plan to resume observations in July/August!)

![](_page_17_Picture_7.jpeg)

### Timeline

- 2018: dome installed
- 2019: instrument installation, first light September
- (2020-2021: covid slowdown...)
- 2021: resume initial observations, calibration with moon and wire
- 2022: 2x23 pixel wafers installed, remote observations prepared
- July/August 2022: start of science observations with two wafers
- March 2023: upgrade to full set of 7 wafers
- Continuous survey observations until ~2025

![](_page_18_Picture_9.jpeg)

#### Conclusions

- GroundBIRD is fully installed and prepared for remote observations
- Starting routine science observations shortly!
- Aim is ~110uK arcmin at 150GHz in the Northern hemisphere complementary to Southern obs!
- Will constrain  $\tau$  with an uncertainty < 0.03, r with an uncertainty < 0.01

![](_page_19_Picture_5.jpeg)

## Part 3: satellite constellations

# (only 2 slides!)

#### Increasing impact of satellite constellations

**Satellites launching in their thousands** as part of constellations like Starlink. Major optical issues from sunlight reflection causing streaks in optical survey data. Also, transmission at Ku-Ka band frequencies, V-band planned! (+ octaves...?). Also, increasing geostationary satellites (Ku full, people now launching Ka!).

New IAU centre to coordinate astronomical response. Open to participation very soon! Led by NOIRIab (USA) and SKAO (UK).

Four hubs: Sathub (I'm co-lead), Industry, Community, Policy. More info now published!: cps.iau.org

![](_page_21_Figure_4.jpeg)

| Constellation   | Use               | Start (GHz) | Stop (GHz) | Instruments affected |
|-----------------|-------------------|-------------|------------|----------------------|
| Starlink Ku-Ka  | User downlink     | 10,7        | 12,75      | MFI, TMS             |
|                 | Gateway downlink  | 17,8        | 18,6       | MFI, TMS             |
|                 | Gateway downlink  | 18,8        | 19,3       | MFI, TMS             |
|                 | Gateway downlink  | 19,7        | 20,2       | MFI, TMS             |
| Starlink V band | Gateway downlink? | 37,5        | 37,75      | FGI                  |
|                 | User downlink?    | 37,5        | 42,5       | FGI, LSPE-STRIP      |
| OneWeb Ku-Ka    | User downlink     | 10,7        | 12,7       | MFI, TMS             |
|                 | Gateway downlink  | 17,8        | 18,6       | MFI, TMS             |
|                 | Gateway downlink  | 18,8        | 19,3       | MFI, TMS             |
| Kuiper Ka       | User/GW downlink  | 17,7        | 18,6       | MFI, TMS             |
|                 | User/GW downlink  | 18,8        | 19,3       | MFI, TMS             |
|                 | User/GW downlink  | 19,3        | 19,4       | MFI, TMS             |
|                 | User/GW downlink  | 19,7        | 20,2       | MFI, TMS             |

![](_page_21_Picture_6.jpeg)

![](_page_21_Picture_7.jpeg)

#### Active radio transmissions

QUIJOTE observes the oldest light in the universe, and our Galaxy on the largest angular scales.

Geostationary satellites are **brighter than the Sun** (even in 2012) - we mask ~10° around dec=0 as a result.

A bigger problem: **Sidelobes** can be seen **well away from the position the telescope is pointing**.

This significantly affects large angular scale observations.

Even though we use **special radio telescopes that minimize sidelobes** at the 99% level. Extra baffles helped, but won't solve the problem completely.

Except now, **satellites are everywhere**, plus moving fast, difficult to predict impact. Can no longer depend on quiet zones + distance from people to minimise impact!

**SKA** (>€1bn) will also see these. Maybe **CMB S4** (~€1bn)? Also many other telescopes, such as the Sardinia Radio Telescope, Yebez, ... - any observing at these frequencies!

![](_page_22_Picture_8.jpeg)

![](_page_22_Figure_9.jpeg)

### Thanks for listening!