



#### Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds

A&A (in publication), arXiv: 1506.06660

**Corresponding authors: Clive Dickinson, Paddy Leahy Significant contributions by Mike Peel, Matias Vidal** 

**Mike Peel** 

**Jodrell Bank Centre for Astrophysics,** 

**The University of Manchester** 

on behalf of the Planck Collaboration





#### **Overview**









Mike Peel, AME Workshop, Noordwijk, June 2016







Dominated by Galactic emission at nearly every frequency. Need to understand them well to subtract them. Also interesting in their own right!

(Figures from Planck 2015 results. X.)











#### **Planck early results**



Planck early results. XX. New light on anomalous microwave emission from spinning dust grains A&A, 536, A20, arXiv: 1101.2031

Planck early results. XXI. Properties of the interstellar medium in the Galactic plane A&A, 536, A21, arXiv: 1101.2032





planck

Mike Peel, AME Workshop, Noordwijk, June 2016

### **PIP XV: Planck AME study**

#### Planck intermediate results. XV. A study of anomalous microwave emission in Galactic clouds A&A, 565, A103, arXiv: 1309.1357



planck

PLANCK

#### **PIP XV: Planck AME study**

#### Planck intermediate results. XV. A study of anomalous microwave emission in Galactic clouds A&A, 565, A103, arXiv: 1309.1357





planck

Mike Peel, AME Workshop, Noordwijk, June 2016

esa

## **PIP XXIII: Galactic Plane**

#### Planck intermediate results. XXIII. Galactic plane emission components derived from Planck with ancillary data A&A, 580, A13, arXiv: 1406.5093



### **PIP XXIII: Galactic Plane**

#### Planck intermediate results. XXIII. Galactic plane emission components derived from Planck with ancillary data A&A, 580, A13, arXiv: 1406.5093







### **AME in nearby galaxies**



planck

(Murphy et al. 2010, Scaife et al. 2010, Hensley et al. 2015)





### **PIP XXV: Andromeda Galaxy**

esa







- Component separation mostly focuses on CMB maps, having e.g., a single low-frequency component. (see Planck Col. 2015. IX.)
- Commander: Bayesian technique, separate components using frequency information (see Eriksen et al. 2008)
- Thanks to many maps from Planck+WMAP+Haslam, we can separate:
  - Synchrotron (but fixed spectral index)
  - Free-free (EM & T<sub>e</sub>)
  - AME (two spinning dust components combined)
  - Thermal dust (only fitting up to 857GHz)
  - + CMB, CO, HCN, calibration factors, bandpass shifts; described in Planck Col. 2015. X.
- Also: high S/N synchrotron polarization map. Combined Planck & WMAP data (weighted, mostly WMAP K & Planck 30).





Mike Peel, AME Workshop, Noordwijk, June 2016 Corona Australis



#### **AME correlations**







- Emissivities against 545/T<sub>353</sub> appear to vary by factor of 2
- Very high emissivity in  $\lambda$  Orionis (Also Chamaeleon)
- Good agreement with previous emissivities (e.g., Davies et al.)

| Region                                                                                                                  | $\frac{AME/545GHz}{[\mu K(MJysr^{-1})^{-1}]}$                                                                             | AME/100 $\mu$ m [ $\mu$ K (MJy sr <sup>-1</sup> ) <sup>-1</sup> ]                                                                              | AME/τ <sub>353</sub><br>] [μK 10 <sup>-6</sup> ]                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R1: PerseusR2: PlumeR3: R CrAR4: $\rho$ OphR5: MuscaChamaeleonR6: OrionR7: $\lambda$ OrionisEntire sky $ b  > 10^\circ$ | $24 \pm 7 \\ 47 \pm 6 \\ 36 \pm 14 \\ 40 \pm 9 \\ 59 \pm 8 \\ 74 \pm 8 \\ 47 \pm 5 \\ 104 \pm 11 \\ 65 \pm 7 \\ 70 \pm 7$ | $12.3 \pm 1.9 \\ 18 \pm 2 \\ 50 \pm 12 \\ 4.6 \pm 0.9 \\ 26 \pm 3 \\ 22 \pm 2 \\ 20 \pm 2 \\ 25 \pm 3 \\ 22 \pm 2 \\ 21 \pm 2 \\ 21 \pm 2 \\ $ | $\begin{array}{c} 1.5 \pm 0.9 \\ 7.7 \pm 1.0 \\ 4.1 \pm 1.8 \\ 2.2 \pm 1.2 \\ 6.9 \pm 1.0 \\ 11 \pm 1.1 \\ 4.7 \pm 0.6 \\ 15 \pm 1.8 \\ 8.3 \pm 0.8 \\ 9.7 \pm 1.0 \end{array}$ |
| XV: PerseusXV: $\rho$ OphXV: MeanD06: Kp2 maskD06: Region mean                                                          | ····<br>···<br>···                                                                                                        | $24 \pm 4 8.3 \pm 1.1 32 \pm 4 21.8 \pm 1.0 25.7 \pm 1.3$                                                                                      | ····<br>····<br>···                                                                                                                                                             |





## **High-frequency peakers**



Fig 3b from Planck 2016 XXV. ILC with CMB, free-free and thermal dust nulled.



Mike Peel, AME Workshop, Noordwijk, June 2016



# **High-frequency peakers**

Peak frequency from Commander (AME1+AME2)



Combined peak frequency from the two AME components fitted by Commander



Mike Peel, AME Workshop, Noordwijk, June 2016



## **AME** polarization



Perseus

Spinning dust models predict low polarization fractions. esa



planck

Mike Peel, AME Workshop, Noordwijk, June 2016



Mike Peel, AME Workshop, Noordwijk, June 2016 Corona Australis

#### **Anomalous Microwave Emission**



#### **Comparison with WMAP**

| Run          | Sy   | nc   | Free | -free | AN   | ΛE   |
|--------------|------|------|------|-------|------|------|
|              | а    | r    | а    | r     | а    | r    |
| MCMC-c base  | 0.50 | 0.62 | 0.68 | 0.77  | •••  |      |
| MCMC-e sdcnm | 0.52 | 0.92 | 0.77 | 0.87  | 4.91 | 0.75 |
| MCMC-f fs    | 0.52 | 0.62 | 0.80 | 0.77  | 3.18 | 0.67 |
| MCMC-g fss   | 0.55 | 0.62 | 0.77 | 0.78  | 3.14 | 0.70 |
| MEM          | 0.34 | 0.84 | 0.76 | 0.79  | 2.18 | 0.86 |

|b| > 20° a>1 = commander > WMAP Trust values if r≥0.9

AME systematically higher Free-free about the same Synchrotron lower

Synchrotron is not 1:1 - two populations due to spectral indices



planck



Slope =  $0.5 \pm 0.1$ 

1.0

### Large Magellanic Cloud



planck

eesa

#### Large & Small Magellanic Clouds



c.f. 3-5Jy from Hensley







- Commander has done a relatively clean separation of Planck & WMAP data into synchrotron, free-free, AME & thermal dust emission (+CO, HCN)
- 2. AME emission seems best correlated with thermal dust at 545GHz.
- 3. New diffuse AME regions identified,  $\lambda$  Orionis particularly interesting.
- 4. Upper limit on pol. AME of 1.6%: need better pol. synchrotron maps!
- 5. Fixed synchrotron spectral index is a key limitation.
- 6. Need better data at 2-15GHz, e.g. S-PASS, C-BASS & QUIJOTE

For Commander analysis and maps, see arXiv:1502.01588 For the results presented here, see arXiv:1506.06660



The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada.





Planck is a project of the European Space Agency, with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.

