
The Stellar Computer

Matthew Dennison & Mike Peel

Department of Physics and Astronomy
The University of Manchester

MPhys Project Report

January 2006

Abstract
A computer program has been constructed that calculates the physical properties within
a star, utilizing four differential equations to describe the relations between the mass,
radius, temperature, pressure and luminosity, as well as three material functions to
provide the density, opacity and energy generated at concentric shells of the star.
Numerical calculations are done using the 4th order Runge-Kutta method with 5th order
error checking, and are initiated from both the surface and core of the star. Results are
given for stars with masses of

0.5M

!
 and

1M

!
, along with recommendations for

further improvements of this program.

The Stellar Computer

Page 2

1. Introduction
Computer-based modelling of stars has been performed since the 1960’s, with the
majority of work done in the period 1960 to 1970. The basic problem consists of four
differential equations, with three additional material equations. These equations contain
8 variables – mass, radius, pressure, temperature, luminosity, density, opacity and
energy generation – one of which is set to a known value, the other seven being
unknown. The aim is to utilise boundary conditions to calculate the unknown variables
at various positions within the star. As the equations cannot be algebraically solved
(there are as many unknown variables as there are equations), they must be numerically
calculated.

The simplifying assumptions that have been made in the construction of this model are
that the star is perfectly spherical and symmetrical, the effects of rotation can be ignored
and that the magnetic field is unimportant. These assumptions mean that the problem
can be from three dimensions to just one. It has also been assumed that the star is in
hydrostatic equilibrium throughout, which is justifiable due to the long lifetime of stars
and means that time-dependent terms can be neglected.

The problem of computationally modelling a star can be broadly split into two topics –
the theory and equations, and the numerical technique. The former will be discussed in
section 2; the latter in section 4. The boundary conditions are discussed in section 3.
Results are in section 5; conclusions in section 6 and suggestions for future directions
are in section 7. The complete program code can be found in the appendix at the end of
this report.

2. The Theory of Stellar Interiors
In what follows, two alternative versions for each differential equation have been
provided. The first version is with respect to the radius r (known as the Eulerian
description), the second with respect to the mass m (the Lagrangian description).
Stellar models generally use the second set of equations, as stars are liable to change
their radius but their mass will remain approximately constant over their lifetime
(excluding events such as supernovae). Whilst the program only uses the Lagrangian
description, it is felt that also providing the Eulerian description aids comprehension.

The variables in the equations below should be evaluated at the specific point being
considered, unless otherwise stated. Complete derivations of the equations can be found
in any stellar evolution text, for example Hansen et. al. (2004), unless otherwise stated.

2.1 Mass and Radius
The relation between the mass m and the radius r in a star is exactly the same as for
any sphere. In the form of a differential equation, it is

dm

dr
= 4!r2" , (1a)

or alternatively

dr

dm
=

1

4!r2"
, (1b)

where ! is the density.

The Stellar Computer

Page 3

2.2 Equation of Hydrostatic Equilibrium
As a star evolves very slowly it can be approximated to be in hydrostatic and
thermodynamic equilibrium. The internal pressure P supports the star against the
gravitational force generated by the star’s own mass; this balance is shown by the
equation of HydroStatic Equilibrium (HSE).

dP

dr
= !

GM
r
"

r
2

, (2a)

or alternatively

dP

dm
= !

GM
r

4"r
4

, (2b)

where G is the gravitational constant and M
r
 denotes the total mass within the radius

r .

2.3 Luminosity
The change in the luminosity L at any shell within the star is equal to the energy !
generated within that shell, i.e.

dL

dr
= 4!r

2
" , (3a)

or alternatively,

dL

dm
= ! . (3b)

2.4 The Transport Equation
The power flow in the star is based on the temperature T , and depends on the main
transport method present at that point. It can be written as

dT

dr
= !

GM
r
"

r
2

T

P
, (4a)

or alternatively,

dT

dm
= !

GM
r

4"r
4

T

P
, (4b)

where the gradient ! is determined by the transport mechanism used; either radiation,
conduction or convection. An approximation can be made such that either radiation or
convection is considered exclusively, rather than a combination of both, by setting

 ! =
!

rad
!

rad
" !

ad

!
conv

!
rad

> !
ad

#
$
%

, (5)

in which !
rad

 is the radiative gradient (which includes conduction), !
ad

 is the adiabatic
gradient and !

conv
 is the convective gradient. The adiabatic gradient marks the point at

which the changeover between convection and radiation occurs.

The radiative gradient is given by

 !
rad

=
3

16"acG

#LP

M
r
T
4

, (6)

where ! is the opacity, a is the radiation constant and c is the speed of light. The
adiabatic gradient is given by

 !
ad
=
d lnT

d lnP
. (7)

The Stellar Computer

Page 4

Convection is more problematic, for no complete theory of convection exists. Due to
time constraints, rather than implementing Mixing Length Theory the approximation
 !

conv
= !

ad
 (8)

has been made.

2.5 Density
One of the main topics of stellar modelling is the Equation of State, which is used here
to calculate the density. This calculates the pressure from the physical conditions within
the star, i.e. via the Ideal Gas law, radiation pressure, degeneracy pressure etc. Only the
first two of these are accounted for in this program as the other effects are negligible in
the case of a main sequence star such as this program is intended to model.

The Equation of State used is

 P = Pgas + Pradiation =
!

µmH

kT +
a

3
T
4 , (9a)

where the first part is the Ideal Gas law, and the second part is the standard equation for
radiation pressure, in which a is the radiation constant, k is the Boltzmann constant
and µ is the mean atomic mass. It can be rearranged to be

 ! = P "
a

3
T
4#

$%
&
'(
µm

H

kT
, (9b)

from which the density can be found at any point where the pressure and temperature is
known. The mean molecular mass can be calculated using

 1

µ
=

X
i

A
ii

! , (10a)

where X
i
 is the fraction of element i within the star, and A

i
 is the number of nucleons

within element i . It can be approximated as

 1

µ
! X +

Y

4
+
Z

A
z

, (10b)

where X is the fraction of hydrogen within the star, Y the fraction of helium, Z the
fraction of ‘metals’ (i.e. all elements higher than helium) and A

z
 the average number of

nucleons within the metals. For the purpose of this model, it is assumed that the mass
fractions are constant throughout the star.

2.6 Energy Generation
This model will only be dealing with low-mass (

2M

!
 or lower) main sequence stars.

Hence the majority of the energy generated will come from the three proton-proton
reactions, as depicted in Figure 1.

The equation used calculates the total energy provided by nuclear reactions happening
in a region of specified density, temperature and chemical composition in equilibrium.
For the derivations behind this equation, and sub-equations, see Clayton (1968).

The Stellar Computer

Page 5

Figure 1: Reactions within the three Proton-Proton chains, with the net result 4 p! 4

He +Qeff .
Approximate probability for each decay reaction within the sun is given in brackets. From Phillips (1999)

with corrections.

The energy generated through the combined PP chains operating in equilibrium can be
calculated using

! = 2.36 "102#X 2

T
6

$2
3e

$33.81T6
$ 1
3

% e

" 1+ 0.0123T
6

1
3 + 0.0109T

6

2
3 + 0.00095T

6() J kg$1
s
$1

 (11)

where T
6
 is the temperature scaled by a factor of 106 . The combination of the second

line of equation 11 and !
e
 provide the appropriate corrections to the energy generated

depending on the ratio of the three PP chains – PPI, PPII or PPIII – that is occurring at
that temperature.

!

e
 is given by

 !
e
= 1"# +# 1+

2

#
$
%&

'
()

1
2$

%
&

'

(
) 0.981FPPI + 0.961FPPII + 0.727FPPIII() , (12)

where ! represents the number of alpha particles available, through

 ! T ,
Y

X

"
#$

%
&'
= 1.2 (1017

Y

X

"
#$

%
&'
2

e
)100T6

) 1
3 , (12)

and F
PPI

, F
PPII

 and F
PPIII

 represent the fraction of the total number of reactions going
through each PP chain; these are calculated using the following equations:

 F
PPI

= 1+
2

!
"
#$

%
&'

1
2

(1
)

*
+
+

,

-
.
.
1+

2

!
"
#$

%
&'

1
2

+ 3

)

*
+
+

,

-
.
.

(1

, (13)

 F
PPII

= 1! F
PPI()

"
p
Be

7()
"
p
Be

7() + " e Be
7()

= 1! F
PPI()

1

1+
"
e
Be

7()
"
p
Be

7()

. (14a)

The Stellar Computer

Page 6

!
p represents the average lifetime of the 7Be atom before it absorbs a proton, which

means the decay proceeds through PPII, and is given by

 !
p
=

1

6.3"10#17
n
p
T6

#
2

3 exp #102.65T6
1
3()
sec . (15)

!
e
 represents the average lifetime of the 7

Be before it absorbs an electron, which
means the decay proceeds through PPIII, and is given by:

 !
e
=

1

7.05 "10
#33
n
e
T
6

#
1

2

sec , (16)

Assuming that the number densities of protons and electrons are equal,

 F
PPII

= 1! F
PPI()

1

1+
6.3

7.05
"1016 " T6

! 1
6 " exp !102.65T6

! 1
3()

. (14b)

Finally,
 F

PPIII
= 1! F

PPI
! F

PPII
, (17)

which comes from the fact that the three fractions must add up to 1.

2.7 Opacity
In general, opacity is complicated to calculate as it depends on a myriad of atomic
effects such as electron degeneracy, quantum diffraction, collective plasma effects etc.
Stellar models can either use approximate equations that fit the opacity curve, or tables
such as those provided by the OPAL code. This program has both methods available,
however only the OPAL data is used for the results given here.

Approximations to the opacity can be described using three equations, depending on the
temperature. Up to T ~ 104.6 !K , the equation

 ! =!
3
"
1
2T

4 . (18)
can be used, where !

3
= 1.85 "10

#14
m
3
kg

#1 . From T ~ 104.6 K to T ~ 106.1 !K , it
becomes
 ! =!

2
"T #3.5 . (19)

where !
2
= 8 "10

21
m
3
kg

#1 . And finally, above T ~ 106.1K it becomes
 ! = 0.02 1+ X() . (20)
to represent the opacity plateau. See Taylor (1981) for the origin of these equations.

The OPAL tables, calculated by code written by Rogers & Iglesias (1995), provide
more accurate values for the opacity at a specific temperature and density. They are
provided as log10 T vs. log10 R tables, where

 R =
!

T
6

3
gcm

"3
K

"3 . (21)

with the opacity given as log10! where ! is in units of cm2
g
!1 . While a thorough

approach would involve interpolation of the values to the exact T and R at that point,
due to time constraints this program only uses the nearest values of T and R natively
available in the tables.

The Stellar Computer

Page 7

3. Boundary Conditions
There are two regions where boundary conditions are present: at the center and surface
of the star.

3.1 Central Conditions
At the center of the star, r = 0 , m = 0 and L = 0 . Pressure will have some central
value P

c
, likewise temperature will be T

c
; from these, central values for the density !

c
,

energy generation !
c
 and opacity !

c
 can be calculated.

At the first shell out from the center, the normal differential equations cannot be used as
the variables with zero value in the center would cause either infinities or singularities
in the equations. Hence approximations must be used; the following approximations
from Kippenhahn & Weigert (1967) were used in this program:

 r =
3

4!"
c

#m
$

%&
'

()

1
3

, (22)

 L = !
c
"m , (23)

 P = P
c
!
1

2

4"
3

#
$%

&
'(

1
3

G)
c

4
3*m

2
3 , (24)

The temperature approximation has been simplified to the following, which only
considers radiative transport;

 T = T
c
!

3"L

256#
2
$r

4
T
c

3
%m , (25)

where ! is the Stefan-Boltzmann constant. The density, energy generation and opacity
are then calculated using the standard equations.

3.2 Surface Conditions
In order to solve the differential equations in the case of specific stars, values of the
total radius R

*
, the total mass M

*
, the surface temperature T

*
 and the luminosity L

*

are required, in addition to the chemical composition of the star. All of these are
measurable or easily calculable.

While it would be possible to assume that the pressure at the surface of the star is zero,
this will generally not be the case as the star does not have a fixed edge. Instead, the
model of a photosphere given by Kippenhahn & Weigert (1990) can be used,

 P =
g

!
=

GMk
1
2

R
2!

3
T
3.5

mhµ()
1
2

"

#
$
$

%

&
'
'

2
3

, (26)

where g =
GM

r
2

, ! is given by equation (18) and ! has been substituted as ! =
Pm

h
µ

Tk
.

The Stellar Computer

Page 8

4. Program Structure & Numerical Methods
The numerical techniques described in this section can be found in more detail in
Numerical Recipes in C (1992).

4.1 Euler’s Method
The approach used to solving the differential equations is to split the star up into a series
of shells, and turn the differential equations into difference equations. For example, take
the differential equation

dy

dx
= f y, x(). (27)

The differential part of this can be represented as

dy

dx

lim

! x"0
"##

yn+1 $ yn

!x .
 (28)

Hence,
 yn+1 = yn + f yn , xn()!x . (29)

This is known as Euler’s method.

4.2 Fourth-Order Runge-Kutta Method
The Euler method has the drawback that the errors it introduces are fairly large – of the
second order of !x . An improved method is the fourth-order Runge-Kutta method,
which reduces the error down to the fifth order of !x . It does this by evaluating the
equation at the initial point, at two trial points and at a trial end point.

Using the above example again, the fourth-order Runge-Kutta method can be expressed
as

k
1
= f yn , xn()!!x

k
2
= f yn +

k
1

2
, xn +

!x
2

"
#$

%
&'
!!x

k
3
= f yn +

k
2

2
, xn +

!x
2

"
#$

%
&'
!!x

k
4
= f yn + k3, xn + !x()!!x

yn+1 = yn +
k
1

6
+
k
2

3
+
k
3

3
+
k
4

6
!!.

 (30)

4.3 Fifth-Order Error Checking & Adaptive Step-Size
The fourth-order Runga-Kutta method can be expanded on to provide an estimate for
the error in the method. The version used requires six Runga-Kutta steps, from which
both a fourth and fifth order solution can be found. The difference between the two
values gives the estimate for the error.

The Stellar Computer

Page 9

The six steps taken are as follows

k
1
= f xn , yn()!!x

k
2
= f xn + a2h, yn + b21k1()!!x

k
3
= f xn + a3h, yn + b31k1 + b32k2()!!x

k
4
= f xn + a4h, yn + b41k1 + b42k2 + b43k3()!!x

k
5
= f xn + a5h, yn + b51k1 + b52k2 + b53k3 + b54k4()!!x

k
6
= f xn + a6h, yn + b61k1 + b62k2 + b63k3 + b64k4 + b65k5()!!x!!!.

 (31)

The solution is
 yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 . (32)
This has an error of
 ! = y

n+1
" y *

n+1 , (33)
where
 y *n+1 = yn + c *1 k1 + c *2 k2 + c *3 k3 + c *4 k4 + c *5 k5 + c *6 k6 . (34)

a
i
, bij , ci and c *

i
 are constants, the values of which are given in Table 1.

i a

i
 b

i1
 b

i2
 b

i3
 b

i4
 b

i5
 c

i
 c *

i

1 0 0 0 0 0 0 37

378

2825

27648

2 1

5

1

5
 0 0 0 0 0 0

3 3

10

3

40

9

40
 0 0 0 250

621

18575

48384

4 3

5

3

10
 !

9

10

6

5
 0 0 125

594

13525

55296

5 1
!
11

54

5

2
 !

70

27

35

27
 0 0 277

14336

6 7

8

1631

55296

175

512

575

13824

44275

110592

253

4096

512

1771

1

4

Table 1: Cash-Karp Parameters for Embedded Runge-Kutta Method. From Press (1992).

While six steps are taken this is not a sixth order solution as some of the c

i
 and c *

i

values are zero, giving the fourth order solution (two of the c
i
 are zero) and fifth order

comparison value (one c *
i
 is zero).

Knowing the errors allows for a variable step-size !x to be used. If there is an error !
in a particular step, but a smaller error of ! * is required, then the step could be
repeated with a smaller !x . The new !x (!x ') can be found from

 !x ' = !x
" *
"

#
$%

&
'(

1
5

. (35)

where the power of 1/5 comes from the fact that the error found is a fifth order error.
Using !x ' should give an error within the desired limit. As there are four variables with

The Stellar Computer

Page 10

errors - Pressure, Temperature, Radius and Luminosity – the largest fractional error is
used to alter !x , as this will keep all values within the desired accuracy.

If, however, the error found is smaller than the desired error there is no need to repeat
the step. Instead, equation 35 can be used to find a new, larger, !x for the next step,
which should give an acceptable error. The process is then repeated, with a step being
repeated each time the error is too large. Using this method should keep both errors (in
the numerical method) and the number of steps to a minimum.

5. Results
Results for two stars are presented in this section; the sun

M = M

!() and a

0.5M

!
 star.

Values for the variables of the latter star were found using figures 22.1 and 22.2 from
Kippenhahn & Weigert (1990), and it has been assumed that it has the same chemical
potential as the sun, namely X = 0.71, Y = 0.27 and Z = 0.02 , with A

z
= 20 . For the

data tables, see the appendix.

5.1 The Sun
The sun has a mass of

M
!
= 1.989 !10

30
kg , a radius of

R
!
= 6.961!10

8
m , a surface

temperature of T = 5800K and a total luminosity of

L
!
= 3.846 !10

26
W .

Graph 1: Radius vs. Mass for the Sun

The Stellar Computer

Page 11

Graph 2: Density and Energy Generation vs. Mass for the Sun

Graph 3: Pressure, Temperature and Luminosity vs. Mass for the Sun

The Stellar Computer

Page 12

Graph 4: The Adiabatic and Radiative gradients for the Sun.

5.2 A

0.5M

!
 star

A half solar mass star

M = 0.5M

!
= 9.99 !10

29
kg() will have a radius of

R ! 0.398R

!
! 2.770 "10

8
m , a surface temperature of Teff ! 3980K and a surface

luminosity of

L = 0.031L

!
= 1.215 !10

25
W .

Graph 5: Radius vs. Mass for a

0.5M

!
 star

The Stellar Computer

Page 13

Graph 6: Density and Energy Generation vs. Mass for a

0.5M

!
 star

Graph 7: Pressure, Temperature and Luminosity vs. Mass for a

0.5M

!
 star

The Stellar Computer

Page 14

Graph 8: The Adiabatic and Radiative gradients for a

0.5M

!
 star

6. Conclusion
The aim of this project, to use a computer to numerically calculate the physical
properties of a star, has only been partially met. Graphs 1 to 4 all show that for a

1M

!

star, when moving outwards from the centre the dependent variables (i.e. radius,
pressure, temperature and luminosity) tend to ±! before the mass variable reaches the
mid-point, although it reaches the mid-point when moving inwards. Graphs 5 – 8 show
that the reverse is true for a

0.5M

!
 star – while the program is fine moving outwards,

infinities occur while moving inwards. The major problem appears to lie with the
opacity. Without interpolating the OPAL data, the values used for the opacity at each
specific density and temperature are not accurate enough. The same opacity has to be
used for a wide range of densities and temperatures. When the value for the opacity
does change, the temperature jumps, with a knock-on effect to the other variables. Once
one variable has gone to ±! , the rest immediately follow. Interpolating the opacity data
could help prevent this.

Another fault can be clearly seen in graphs 1 and 5, and is also visible in the rest of the
graphs. The values calculated for the radii of the different mass shells will not meet at
the mid-point of the star. Graphs 2 to 4 and 6 to 8 appear to show that the other
variables will be closer at the mid-point (if they continued in the same direction without
going to ±!), however this is deceptive as these are on log scales – this only shows that
they will be within the correct order of magnitude (as will the radius). This problem
most likely stems from the boundary conditions specified. The surface boundary
conditions can be accurately found from observational data (especially in the case of the
sun; less so for other stars), but the core conditions are harder to find as we cannot
directly observe or measure them. The shooting method, where the program runs
through a set of boundary conditions until the variables meet at the mid-point, could
help overcome this problem.

The Stellar Computer

Page 15

These problems aside, the graphs give an idea of the conditions inside a star. Graphs 2
and 6 show that, moving away from the core, the density and energy generation fall,
particularly near the surface. This would be expected since, as can also be seen from
graphs 3 and 7, temperature and pressure also fall when moving outwards. The
luminosity, shown on graphs 3 and 7, starts from nothing then rises very quickly when
moving out from the centre due to the high energy generation. Pressure and temperature
fall very quickly at the surface of the star (graphs 3 and 7), as would be expected due to
the relatively low density at the surface of a star.

Overall, despite the problems mentioned, the program appears to be heading in the right
direction. It should be feasible, given time, to produce a program that would accurately
model the conditions in a star.

7. Future Directions
As this program has the potential to be very complex, it is recommended that future
students doing this project are given the choice of starting from scratch, or using the
version of the program described here (or that written by other students). This would
enable them to look at more recent physics and computational techniques than is
currently used in this program, which is mostly based on methods from the 1960’s.

This program focuses on building a model of the star using fairly simple physics and
more complicated numerical techniques. The most obvious and fundamental
continuation of this program would be the introduction of time evolution of the star.
There are a myriad of ways in which the physics could be extended, examples of which
are:

- Energy generation from the CNO cycle,
- Layer-based chemical composition,
- Time evolution of the chemical composition,
- Time-dependent terms for the luminosity (i.e. storage / emission of energy),
- Improved treatment of convection,
- Inertial terms in calculating the pressure,
- Time-based variations of the mass and radius.

There are also ways in which the numerical method could be altered and improved, a
few of which are:

- More elaborate adaptive stepsize algorithms,
- Implementation of the Shooting method, or
- Application of the Henyey (Relaxation) method.

More complicated extensions to the program would include such things as modelling
the effects of magnetic fields, and rotation of the star, which would involve a full 3D
model of the star. Models of binary systems could also be constructed. Additionally,
solar winds and flares could be modelled using the base model constructed for the
above effects.

In the long term, there are two logical conclusions for this project, both of which are
closely related. The first is the modelling of the sun, such that the computer model holds
as much data about the sun as possible and hence extrapolates what will happen in the
near- to long-term future. The second is the thorough modelling of the development,

The Stellar Computer

Page 16

evolution and demise of other stars, where less information is known about them, or
trying out models of theoretical stars to find out whether they are stable and/or how
long they would survive.

References
Clayton, D.; “Principles of Stellar Evolution and Nucleosynthesis”; 1968.

Hansen, C., Kawaler, S & Trimble, V; Stellar Interiors, Physical Principles, Structure
and Evolution, Second Edition; 2004; Springer.

Kippenhahn, R., Weigert, A.; Methods for Calculating Stellar Evolution; Methods in
Computational Physics, Volume 7, 1967, pp 129-190; Academic Press.

Kippenhahn, R., Weigert, A.; “Stellar Structure and Evolution”; 1990 (3rd printing,
1994); p70.

Phillips, A. C.; “The Physics of Stars”, Second Edition; 1999; Wiley; p119.

Press, W. H., et. al; Numerical Recipes in C: The Art of Scientific Computing; 1992;
Cambridge University Press.

Rogers, F. R., Iglesias, C. A.; OPAL Opacity Tables; 1995
Described by “Updated OPAL Opacities”; Astrophys. J. No. 464, pp 943-953;1996.
Available online at http://www-phys.llnl.gov/Research/OPAL/

Taylor, R.J; The Stars: their structure and evolution; 1981.

The Stellar Computer

Page 17

Appendix: Program Code
The C programming language has been used for this program, as it is more familiar to
the authors than the traditional FORTRAN and its variants.

All computer code, results tables and graphs are available online at:
http://www.mikepeel.net/physics/stellarcomputer/

Star.c
/*
PC4181 MPhys Project - Stellar Computer

Calculating the properties of a star given a set of input numbers
Started: 11/10/2005
Last Modified: 11/01/2006

Matthew Dennison (matthew.dennison@student.manchester.ac.uk) & Mike

Peel (email@mikepeel.net)
*/

/*
Include the standard functions
*/
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>

/*
Set up the constants
N is the number of times we're doing the calculation
NUM_OPAL_I and NUM_OPAL_J are the number of rows and columns

respectively (inc. logT and logR) of the opacity.txt file.
*/
#define N 100000
#define CONST_PI 3.14159
#define CONST_G 6.674e-11
#define CONST_K 1.381e-23
#define CONST_A 7.5657e-16
#define CONST_H 6.626e-34
#define CONST_C 299792458.0
#define MASS_H 1.673e-27
#define MASS_e 9.109e-31
#define NUM_OPAL_I 71
#define NUM_OPAL_J 20

/*
Set the input/output directory
*/
char directory[500] = "/star/";

/*
Set up the arrays
*/
long double radius[N], err_radius[N];
long double mass[N];
long double temperature[N], err_temperature[N];
long double pressure[N], err_pressure[N];
long double density[N];
long double luminosity[N], err_luminosity[N];

The Stellar Computer

Page 18

long double opacity[N];
long double energy[N];
long double dm[N], min_dm, new_dm;
long double degenerate_pressure[N], fermi_pressure;
long double del_adiabatic[N], del_radiative[N];
long double mu;
long double X, Y, Z, A_Z;
long double opal_data[71][20];

/*
Set up the variables used throughout the application
The temp_ variables are used in the Runge-Kutta routines.
The set number variables are the coefficients for the various elements

within the RUk w/ 5th order error checking
*/
long double temp_density[6],
 temp_radius[6],
 temp_pressure[6],
 temp_opacity[6],
 temp_temperature[6],
 temp_energy[6],
 temp_luminosity[6];
long double *ptr_density, *ptr_opacity, *ptr_energy;
long double a2 = 0.2,
 a3 = 3.0/10.0,
 a4 = 3.0/5.0,
 a5 = 1.0,
 a6 = 7.0/8.0;
long double b21 = 0.2,
 b31 = 3.0/40.0,
 b32 = 9.0/40.0,
 b41 = 3.0/10.0,
 b42 = -9.0/10.0,
 b43 = 6.0/5.0,
 b51 = -11.0/54.0,
 b52 = 2.5,
 b53 = -70.0/27.0,
 b54 = 35.0/27.0,
 b61 = 1631.0/55296.0,
 b62 = 175.0/512.0,
 b63 = 575.0/13824.0,
 b64 = 44275.0/110592.0,
 b65 = 253.0/4096.0;
long double c1 = 37.0/378.0,
 c2 = 0.0,
 c3 = 250.0/621.0,
 c4 = 125.0/594.0,
 c5 = 0.0,
 c6 = 512.0/1771.0;
long double C1 = 2825.0/27648.0,
 C2 = 0.0,
 C3 = 18575.0/48384.0,
 C4 = 13525.0/55296.0,
 C5 = 277.0/14336.0,
 C6 = 0.25;
long double dP[6], dT[6], dR[6], dL[6], dM[6];
long double P1, T1, R1, L1;
// error is used to check the numerical error and change dm
long double error = 1e-8;
long double old_temperature, old_pressure;
int direction, loop, i, i_min, i_max, k, j;

The Stellar Computer

Page 19

// accuracy determines the number of decimal places the program
outputs.

int accuracy = 12;
FILE *input_file, *output_file, *opacity_file;
char filename[100];

/*
Work out the radiative constant for later
*/
long double radiative_constant = (3.0 / (16.0 * CONST_PI * CONST_A *

CONST_C * CONST_G));

/*
Get the functions
*/
#include "functions.h"

/*
This is the main program
*/
int main()
{
 /*
 Get the input data from input.txt
 */
 sprintf(filename, "%sinput.txt", directory);
 input_file = fopen(filename, "r");
 if (!input_file)
 {
 printf("Failed to open %sinput.txt \n", directory);
 return 1;
 };
 fscanf(input_file, "Radius: %Lf\n", &radius[0]);
 fscanf(input_file, "Mass: %Lf\n", &mass[0]);
 fscanf(input_file, "Surface Temperature: %Lf\n", &temperature[0]);
 fscanf(input_file, "Luminosity: %Lf\n", &luminosity[0]);
 fscanf(input_file, "Core Temperature: %Lf\n", &temperature[N-1]);
 fscanf(input_file, "Core Pressure: %Lf\n", &pressure[N-1]);
 fscanf(input_file, "X: %Lf\n", &X);
 fscanf(input_file, "Y: %Lf\n", &Y);
 fscanf(input_file, "Z: %Lf\n", &Z);
 fscanf(input_file, "A_Z: %Lf\n", &A_Z);

 fclose(input_file);

 /*
 Get the OPAL data
 */
 sprintf(filename, "%sopacity.txt", directory);
 opacity_file = fopen(filename, "r");
 if (!opacity_file)
 {
 printf("Failed to open %sopacity.txt \n", directory);
 return 1;
 };
 // For each column in the csv file...
 for (i = 0; i < NUM_OPAL_I; i++)
 {
 // For each row in the csv file...
 for (j = 0; j < NUM_OPAL_J; j++)

The Stellar Computer

Page 20

 {
 fscanf(opacity_file, "%Lf", &opal_data[i][j]);
 /*
 For debugging...
 printf("%Lf", opal_data[i][j]);
 */
 };
 /*
 For debugging...
 printf("\n");
 */
 };
 fclose(opacity_file);

 /*
 Set a minimum mass to be 100x smaller than that defined by N -

that's the minimum we should need to use for accuracy of
around 1e-8.

 */
 min_dm = mass[0] / (100 * N);

 // Calculate mu
 mu = calc_mu(X, Y, Z, A_Z);

 /*
 Set the remaining boundary conditions at the surface and the

centre.
 Pressure uses the surface pressure equation. See section 3.2 of

the report for details. 1.85e-14 is kappa_3.
 */
 dm[1] = min_dm;
 pressure[0] = pow(((CONST_G * mass[0] * pow(CONST_K, 0.5)) /

(pow(radius[0], 2.0) * 1.85e-14 * pow(temperature[0], 3.5) *
pow(mu, 0.5))), 0.66);

 density[0] = calc_density(X, temperature[0], pressure[0]);
 opacity[0] = 1.85e-14 * pow(density[0], 0.5) * pow(temperature[0],

4.0);

 /*
 Get the values for the core.
 Temperature and pressure have been defined when input.txt is read.
 */
 dm[N-1] = min_dm;
 mass[N-1] = 0.0;
 luminosity[N-1] = 0.0;
 radius[N-1] = 0.0;
 density[N-1] = calc_density(X, temperature[N-1], pressure[N-1]);
 opacity[N-1] = calc_opacity(X, density[N-1], temperature[N-1]);
 energy[N-1] = calc_energy_generation(temperature[N-1], density[N-

1], X, Y);

 /*
 Get the values for the second innermost shell.
 See section 3.1 of the report for details.
 */
 dm[N-2] = min_dm;
 mass[N-2] = dm[N-1];
 radius[N-2] = pow(((3.0 * mass[N-2]) / (4.0 * CONST_PI *

density[N-1])), 1.0 / 3.0);
 luminosity[N-2] = energy[N-1] * mass[N-2];

The Stellar Computer

Page 21

 pressure[N-2] = pressure[N-1] - 0.5 * pow((4.0 * CONST_PI / 3.0),
(1.0 / 3.0)) * CONST_G * pow(density[N-1], (4.0 / 3.0)) *
pow(mass[N-2], (2.0 / 3.0));

 del_radiative[N-2] = radiative_constant * opacity[N-1] * energy[N-
1] * pressure[N-1] * pow(temperature[N-1], -4.0);

 temperature[N-2] = temperature[N-1] - (3.0 * opacity[N-1] *
luminosity[N-2] * mass[N-2])/(256.0 * CONST_PI * CONST_PI *
5.67e-8 * pow(radius[N-2],4.0) * pow(temperature[N-1], 3.0));

 density[N-2] = calc_density(X, temperature[N-2], pressure[N-2]);
 opacity[N-2] = calc_opacity(X, density[N-2], temperature[N-2]);
 energy[N-2] = calc_energy_generation(temperature[N-2], density[N-

2], X, Y);

 dm[N-3] = min_dm;

 for (loop = 0; loop < 2; loop++)
 {
 if (loop == 1)
 {
 /*
 This is the loop starting at the core, and working

outwards.
 Direction is negative as i is decreasing - i=N is the

center.
 */
 direction = -1;
 i_min = N - 3;
 i_max = 0.5 * N;
 }
 else
 {
 /*
 This is the loop starting on the surface, and working

inwards
 Direction is positive as i is increasing - i=1 is the

surface.
 */
 direction = +1;
 i_min = 1;
 i_max = 0.5 * N;
 };
 for (i = i_min; (loop == 0) ? i < i_max : i > i_max; i +=

direction)
 {

 /*
 Mass
 */
 mass[i] = mass[i - direction] - direction * dm[i];

 /*
 First Runge-Kutta loop
 */
 dP[0] = 0.0;
 dT[0] = 0.0;
 dR[0] = 0.0;
 dL[0] = 0.0;
 dM[0] = 0.0;
 ptr_density = &density[i - direction];
 ptr_energy = &energy[i - direction];
 ptr_opacity = &opacity[i - direction];

The Stellar Computer

Page 22

 old_temperature = (temperature[i - direction * 2] +
temperature[i - direction]) * b21;

 old_pressure = (pressure[i - direction * 2] + pressure[i -
direction]) * b21;

 rungekutta(direction, i, 0);

 /*
 Second Runge-Kutta loop
 */
 dP[1] = temp_pressure[0] * b21;
 dT[1] = temp_temperature[0] * b21;
 dR[1] = temp_radius[0] * b21;
 dL[1] = temp_luminosity[0] * b21;
 dM[1] = dm[i] * a2;
 ptr_density = &temp_density[0];
 ptr_energy = &temp_energy[0];
 ptr_opacity = &temp_opacity[0];
 old_temperature = ((temperature[i - direction * 2] +

temperature[i - direction]) * b21);
 old_pressure = ((pressure[i - direction * 2] + pressure[i

- direction]) * b21);
 rungekutta(direction, i, 1);

 /*
 Third Runge-Kutta loop
 */
 dP[2] = (temp_pressure[0] * b31) + (temp_pressure[1] *

b32);
 dT[2] = (temp_temperature[0] * b31) + (temp_temperature[1]

* b32);
 dR[2] = (temp_radius[0] * b31) + (temp_radius[1] * b32);
 dL[2] = (temp_luminosity[0] * b31) + (temp_luminosity[1] *

b32);
 dM[2] = dm[i] * a3;
 ptr_density = &temp_density[1];
 ptr_energy = &temp_energy[1];
 ptr_opacity = &temp_opacity[1];
 old_temperature = (temperature[i - direction * 2] +

temperature[i - direction]) / 2;
 old_pressure = (pressure[i - direction * 2] + pressure[i -

direction]) / 2;
 rungekutta(direction, i, 2);

 /*
 Fourth Runge-Kutta loop
 */
 dP[3] = (temp_pressure[0] * b41) + (temp_pressure[1] *

b42) + (temp_pressure[2] * b43);
 dT[3] = (temp_temperature[0] * b41) + (temp_temperature[1]

* b42) + (temp_temperature[2] * b43);
 dR[3] = (temp_radius[0] * b41) + (temp_radius[1] * b42) +

(temp_radius[2] * b43);
 dL[3] = (temp_luminosity[0] * b41) + (temp_luminosity[1] *

b42) + (temp_luminosity[2] * b43);
 dM[3] = dm[i] * a4;
 ptr_density = &temp_density[2];
 ptr_energy = &temp_energy[2];
 ptr_opacity = &temp_opacity[2];
 old_temperature = temperature[i - direction];
 old_pressure = pressure[i - direction];
 rungekutta(direction, i, 3);

The Stellar Computer

Page 23

 /*
 Fifth Runge-Kutta loop
 */
 dP[4] = (temp_pressure[0] * b51) + (temp_pressure[1] *

b52) + (temp_pressure[2] * b53) + (temp_pressure[3] *
b54);

 dT[4] = (temp_temperature[0] * 51) + (temp_temperature[1]
* b52) + (temp_temperature[2] * b53) +
(temp_temperature[3] * b54);

 dR[4] = (temp_radius[0] * b51) + (temp_radius[1] * b52) +
(temp_radius[2] * b53) + (temp_radius[3] * b54);

 dL[4] = (temp_luminosity[0] * b51) + (temp_luminosity[1] *
b52) + (temp_luminosity[2] * b53) +
(temp_luminosity[3] * b54);

 dM[4] = dm[i] * a5;
 ptr_density = &temp_density[3];
 ptr_energy = &temp_energy[3];
 ptr_opacity = &temp_opacity[3];
 old_temperature = temperature[i - direction];
 old_pressure = pressure[i - direction];
 rungekutta(direction, i, 4);

 /*
 Sixth Runge-Kutta loop
 */
 dP[5] = (temp_pressure[0] * b61) + (temp_pressure[1] *

b62) + (temp_pressure[2] * b63) + (temp_pressure[3] *
b64) + (temp_pressure[4] * b65);

 dT[5] = (temp_temperature[0] * 61) + (temp_temperature[1]
* b62) + (temp_temperature[2] * b63) +
(temp_temperature[3] * b64) + (temp_temperature[4] *
b65);

 dR[5] = (temp_radius[0] * b61) + (temp_radius[1] * b62) +
(temp_radius[2] * b63) + (temp_radius[3] * b64) +
(temp_radius[4] * b65);

 dL[5] = (temp_luminosity[0] * b61) + (temp_luminosity[1] *
b62) + (temp_luminosity[2] * b63) +
(temp_luminosity[3] * b64) + (temp_luminosity[4] *
b65);

 dM[5] = dm[i] * a6;
 ptr_density = &temp_density[4];
 ptr_energy = &temp_energy[4];
 ptr_opacity = &temp_opacity[4];
 old_temperature = temperature[i - direction];
 old_pressure = pressure[i - direction];
 rungekutta(direction, i, 5);

 /*
 Finally, compute the values.
 */
 radius[i] = radius[i - direction] - direction *

((temp_radius[0] * c1) + (temp_radius[1] * c2) +
(temp_radius[2] * c3) + (temp_radius[3] * c4) +
(temp_radius[4] * c5) + (temp_radius[5] * c6));

 pressure[i] = pressure[i - direction] + direction *
((temp_pressure[0] * c1) + (temp_pressure[1] * c2) +
(temp_pressure[2] * c3) + (temp_pressure[3] * c4) +
(temp_pressure[4] * c5) + (temp_pressure[5] * c6));

 temperature[i] = temperature[i - direction] + direction *
((temp_temperature[0] * c1) + (temp_temperature[1] *

The Stellar Computer

Page 24

c2) + (temp_temperature[2] * c3) +
(temp_temperature[3] * c4) + (temp_temperature[4] *
c5) + (temp_temperature[5] * c6));

 luminosity[i] = luminosity[i - direction] - direction *
((temp_luminosity[0] * c1) + (temp_luminosity[1] * c2)
+ (temp_luminosity[2] * c3) + (temp_luminosity[3] *
c4) + (temp_luminosity[4] * c5) + (temp_luminosity[5]
* c6));

 err_radius[i] = sqrt(pow(radius [i] - (radius[i -

direction] - direction *((temp_radius[0] * C1) +
(temp_radius[1] * C2) + (temp_radius[2] * C3) +
(temp_radius[3] * C4) + (temp_radius[4] * C5) +
(temp_radius[5] * C6))), 2.0));

 err_pressure[i] = sqrt(pow(pressure[i] - (pressure[i -
direction] + direction *((temp_pressure[0] * C1) +
(temp_pressure[1] * C2) + (temp_pressure[2] * C3) +
(temp_pressure[3] * C4) + (temp_pressure[4] * C5) +
(temp_pressure[5] * C6))), 2.0));

 err_temperature[i] = sqrt(pow(temperature[i] -
(temperature[i - direction] + direction
*((temp_temperature[0] * C1) + (temp_temperature[1] *
C2) + (temp_temperature[2] * C3) +
(temp_temperature[3] * C4) + (temp_temperature[4] *
C5) + (temp_temperature[5] * C6))), 2.0));

 err_luminosity[i] = sqrt(pow(luminosity[i] - (luminosity[i
- direction] - direction *((temp_luminosity[0] * C1) +
(temp_luminosity[1] * C2) + (temp_luminosity[2] * C3)
+ (temp_luminosity[3] * C4) + (temp_luminosity[4] *
C5) + (temp_luminosity[5] * C6))), 2.0));

 L1 = pow(((error * luminosity[i]) / err_luminosity[i]),

0.2);
 T1 = pow(((error * temperature[i]) / err_temperature[i]),

0.2);
 R1 = pow(((error * radius[i]) / err_radius[i]), 0.2);
 P1 = pow(((error * pressure[i]) / err_pressure[i]), 0.2);

 if (L1 < T1 && L1 < R1 && L1 < P1)
 {
 new_dm = dm[i] * L1;
 }
 else if (T1 > R1 && T1 > P1)
 {
 new_dm = dm[i] * T1;
 }
 else if (R1 > P1)
 {
 new_dm = dm[i] * R1;
 }
 else
 {
 new_dm = dm[i] * P1;
 };

 // Check and see which one is the greater - new_dm or

min_dm - and use that one.
 if (new_dm < min_dm)
 {
 dm[i + direction] = min_dm;
 }

The Stellar Computer

Page 25

 else
 {
 dm[i + direction] = new_dm;
 };

 density[i] = calc_density(X, temperature[i], pressure[i]);
 opacity[i] = calc_opacity(X, density[i], temperature[i]);
 energy[i] = calc_energy_generation(temperature[i],

density[i], X, Y);

 /*
 Calculate the degeneracy pressure.
 */
 fermi_pressure = pow((3.0 * density[i]) / (8.0 * CONST_PI

* X * MASS_H), 1.0/3.0) * CONST_H;
 if (fermi_pressure < MASS_e * 3.0e8)
 {
 degenerate_pressure[i] = (pow(CONST_H, 2.0) * pow(3.0

/ CONST_PI, 2.0 / 3.0) * pow(density[i] / 2.0, 5.0
/ 3.0)) / (20.0 * MASS_e * pow(MASS_H, 5.0 /
3.0));

 }
 else
 {
 degenerate_pressure[i] = (CONST_H * 3.0e8 * pow(3.0 /

CONST_PI, 1.0 / 3.0) * pow(density[i] / 2.0, 4.0 /
3.0)) / (8.0 * pow (MASS_H, 4.0 / 3.0));

 };

 /*
 Are we there yet? ("there" being half the mass of the

star)
 Alternatively; have things gone to nan? (Could check more

than just temperature for nan, but as all the
variables are interlinked there's not much point doing
so)

 */
 if (loop == 1 && (mass[i] > (mass[0] / 2.0) ||

isnan(temperature[i]) || temperature[i] == 0.0))
 {
 j = i;
 break;
 }
 else if (loop != 1 && (mass[i] < (mass[0] / 2.0) ||

isnan(temperature[i]) || temperature[i] == 0.0))
 {
 k = i + 1;
 break;
 };

 }; // End calculation loop
 }; // End big loop

 /*
 Create the output file
 */
 sprintf(filename, "%sOutput.csv", directory);
 output_file = fopen(filename, "w");
 if (!output_file)
 {
 printf("Failed to open %soutput.csv \n", directory);

The Stellar Computer

Page 26

 return 1;
 };
 fprintf(output_file, "Number,Mass,Density,Radius,Radius

Error,Pressure,Pressure
Error,Degeneracy,Opacity,Temperature,Temperature
Error,del_radiative,del_adiabatic,Energy,Luminosity,Luminosity
Error\n");

 /*
 Output the calculated variables
 */
 for (loop = 0; loop < 2; loop++)
 {
 if (loop == 0)
 {
 /*
 This is the loop starting on the surface, and working

inwards
 Direction is positive as i is increasing - i=1 is the

surface.
 */
 direction = +1.0;
 i_min = 0;
 i_max = k;
 }
 else
 {
 /*
 This is the loop starting at the core, and working

outwards.
 Direction is negative as i is decreasing - i=N is the

center.
 */
 direction = +1.0;
 i_min = j;
 i_max = N;
 };
 for (i = i_min; i < i_max; i = i + direction)
 {
 if (mass[i] != 0.0 || i > N-3)
 {
 fprintf(output_file,

"%d,%.*Le,%.*Le,%.*Le,%.*Le,%.*Le,%.*Le,%.*Le,%.*L
e,%.*Le,%.*Le,%.*Le,%.*Le,%.*Le,%.*Le,%.*Le\n", i,
accuracy, mass[i], accuracy, density[i], accuracy,
radius[i], accuracy, err_radius[i], accuracy,
pressure[i], accuracy, err_pressure[i], accuracy,
degenerate_pressure[i], accuracy, opacity[i],
accuracy, temperature[i], accuracy,
err_temperature[i], accuracy, del_radiative[i],
accuracy, del_adiabatic[i], accuracy, energy[i],
accuracy, luminosity[i], accuracy,
err_luminosity[i]);

 };
 };
 };

 fclose(output_file);

 /*
 All is done, so end the program.

The Stellar Computer

Page 27

 */
 printf("\n%d positions calculated (%d inwards, %d outwards)\n", (N

- j) + k, k, (N - j));
 return 0;
}

functions.h
/*
PC4181 MPhys Project - Stellar Computer

Functions for star.c
Started: 23/12/2005
Last Modified: 11/01/2006

Matthew Dennison (matthew.dennison@student.manchester.ac.uk) & Mike

Peel (email@mikepeel.net)
*/

/*
Include the standard functions
*/
#include <math.h>
#include <stdlib.h>

/*
Calculates the radius difference
See section 2.1 of the report for details.
*/
long double calc_radius_dif(long double prev_radius,
 long double density)
{
 long double output;

 output = (1.0 / (4.0 * CONST_PI * pow(prev_radius, 2.0) *

density));

 return (output);
};

/*
Calculates the pressure difference using the equation of Hydrostatic

Equilibrium
See section 2.2 of the report for details.
*/
long double calc_pressure_dif(long double mass,
 long double radius)
{
 long double output;

 output = ((CONST_G * mass) / (4.0 * CONST_PI * pow(radius, 4.0)));

 return (output);
};

/*
Calculates the luminosity
See section 2.3 of the report for details.
*/

The Stellar Computer

Page 28

long double calc_luminosity_dif(long double energy_generation)
{
 long double output;

 output = energy_generation;

 return (output);
};

/*
Calculates the temperature
See section 2.4 of the report for details.
*/
long double calc_temperature_dif(long double temperature,
 long double opacity,
 long double luminosity,
 long double radius,
 long double mass,
 long double pressure,
 long double prev_temperature,
 long double prev_pressure,
 int i)
{
 long double output;

 // This calculates the start of the differential equation, i.e.

before del.
 output = (CONST_G * mass * temperature) / (4.0 * CONST_PI *

pow(radius, 4.0) * pressure);

 // Calculate the adiabatic gradient, del_ad
 del_adiabatic[i] = ((log(temperature/prev_temperature)) /

(log(pressure / prev_pressure)));

 // Calculate the radiative gradient, del_rad
 del_radiative[i] = (radiative_constant * opacity * luminosity *

pressure) / (mass * pow(temperature, 4.0));

 if (del_radiative[i] > del_adiabatic[i] && del_adiabatic[i] > 0.0)
 {
 // This is convective.
 output = output * del_adiabatic[i];
 }
 else
 {
 // This is radiative
 output = output * del_radiative[i];
 };

 return (output);
};

/*
Calculate mu, i.e. the average molecular mass
See section 2.5 of the report for details.
*/
long double calc_mu(long double X,
 long double Y,
 long double Z,

The Stellar Computer

Page 29

 long double A_Z)
{
 long double output;

 output = MASS_H / ((X + (Y / 4.0) + (Z / A_Z)));

 return (output);
};

/*
Calculates the density
Equation Of State - uses the Ideal Gas law plus the Radiation

Pressure.
See section 2.5 of the report for details.
Note that mu contains m_h.
*/
long double calc_density(long double X,
 long double temperature,
 long double pressure)
{
 long double output;

 output = (mu / (CONST_K * temperature)) * (pressure + (1.0 / 3.0)

* CONST_A * pow(temperature, 4.0));

 return (output);
};

/*
Calculates the energy generation per unit volume at the specified

temperature
See section 2.6 of the report for details.
*/
long double calc_energy_generation(long double temperature,
 long double density,
 long double X,
 long double Y)
{
 long double output, temp, temp_1_3, temp_2_3, alpha, psi, F_PPI,

F_PPII, F_PPIII;

 /*
 For ease of calculation, work out temp = temperature / 10^6
 Also, temp_1_3 and temp_2_3 will also be needed several times

over...
 */
 temp = temperature * 1e-6;
 temp_1_3 = pow(temp, (1.0 / 3.0));
 temp_2_3 = pow(temp, (2.0 / 3.0));

 /*
 F_ denotes fraction. The three variables determine the fractions

of PPI, PPII and PPIII chains happening at the time. Used to
adjust the output energy appropriately via psi.

 Alpha is the number of alpha particles available; it impacts psi,
F_PPI, F_PPII and F_PPIII.

 This only becomes relevant when there's helium present in the star
(which is nearly always the case

 */

The Stellar Computer

Page 30

 if (Y > 0)
 {
 alpha = 1.2e17 * pow((Y / X), 2.0) * exp(-100 / temp_1_3);
 F_PPI = (pow((1.0 + (2.0 / alpha)), 0.5) - 1.0) / (pow((1.0 +

(2.0 / alpha)), 0.5) + 3.0);
 F_PPII = (1 - F_PPI) / (1 + (6.3 / 7.05) * 1e16 * pow(temp, (-

1.0 / 6.0)) * exp(-102.65 * pow(temp, -1.0 / 3.0)));
 F_PPIII = (1 - F_PPI - F_PPII);
 psi = (1.0 - alpha + alpha * pow((1.0 + (2.0 / alpha)), 0.5))

* (0.981 * F_PPI + 0.961 * F_PPII * 0.727 * F_PPIII);
 }
 else
 {
 psi = 1.0;
 };

 /*
 This deals with the pp chain
 */
 output = 2.36e2 * density * pow(X, 2.0) * pow(temp_2_3, -1) *

exp(-33.81 / temp_1_3) * (1 + 0.0123 * temp_1_3 + 0.0109 *
temp_2_3 * 0.00095 * temp) * psi;

 /*
 For debugging...
 printf("%e %e %e %e %e %e", alpha, F_PPI, F_PPII, F_PPIII,

psi, output);
 */

 return (output);
};

/*
Calculates the opacity at the specified temperature
See section 2.7 of the report for details.
*/
long double calc_opacity(long double X,
 long double density,
 long double temperature)
{
 long double output = 0.0;
 long double opacity_1, opacity_2, opacity_3;
 long double logR = 0.0;
 long double logT = 0.0;
 int k, k_use, l, l_use;

 // Set up a switch between the three opacities.
 int opacity_switch = 3;

 switch(opacity_switch)
 {
 case 1:
 /*
 Use temperature boundaries
 */
 if (temperature < 4e4)
 {
 output = 1.85e-14 * pow(density, 0.5) *

pow(temperature, 4.0);
 }

The Stellar Computer

Page 31

 else if (temperature < 1.26e6)
 {
 output = 4e21 * (X + Y) * (1 + X) * density *

pow(temperature, -3.5);
 }
 else
 {
 output = 0.02 * (1.0 + X);
 };
 break;
 case 2:
 /*
 Use the middle one of the three opacity equations - this

should in general be the appropriate one, and avoids
the jump between the third and second equations when
going outwards. Unfortunately, it seems to do this by
ignoring the third equation completely in the sun...

 */

 opacity_1 = 1.85e-14 * pow(density, 0.5) *

pow(temperature, 4.0);
 opacity_2 = 8e21 * density * pow(temperature, -3.5);
 opacity_3 = 0.02 * (1.0 + X);

 if ((opacity_1 < opacity_2) && (opacity_1 > opacity_3))
 {
 output = opacity_1;
 }
 else if ((opacity_2 < opacity_1) && (opacity_2 >

opacity_3))
 {
 output = opacity_2;
 }
 else
 {
 output = opacity_3;
 };
 break;
 case 3:
 /*
 Use OPAL opacity data from opacity.txt.
 Note that we start at k = l = 1, not 0 - the 0th

row/column is the value for logT and logR.
 */

 logT = log10(temperature);
 // 1000 changes to cgs units, which the OPAL data uses
 logR = log10((density / 1000.0) * pow((1e-6 *

temperature), 3.0));

 /*
 For debugging
 printf("%Lf, %Lf\n", logT, logR);
 */

 // Find the closest T
 for(k = 1; k < NUM_OPAL_I; k++)
 {
// printf("%d\n", k);
 if ((opal_data[k][0] - logT) >= 0.0 || k ==

(NUM_OPAL_I - 1))

The Stellar Computer

Page 32

 {
 // Check and see if the previous value was closer

or not
 k_use = k;
 if (k != 1)
 {
 if ((abs(opal_data[k-1][0] - logT)) <

abs(opal_data[k][0] - logT))
 {
 k_use = k - 1;
 };
 };
 // Find the closest R
 for(l = 1; l < NUM_OPAL_J; l++)
 {
 if ((opal_data[0][l] - logR) >= 0.0 || l ==

(NUM_OPAL_J - 1))
 {
 // Check and see if the previous value was

closer or not
 l_use = l;
 if (l != 1)
 {
 if ((abs(opal_data[0][j-1] - logR)) <

abs(opal_data[0][l] - logR))
 {
 l_use = l - 1;
 };
 };
 output = opal_data[k_use][l_use];
 break;
 };
 };
 };
 };

 // 10 changes back to SI units.
 output = pow(10, output) * 10.0;
 break;
 };

 return (output);
};

/*
The Runge-Kutta function. Calculates the next set of differences

depending on the previous set.
All functions other than dir, i and j are globally accessible, so

aren't explicitely passed.
dT[j], dP[j] etc. are defined previous to this function being called.
dir determines the direction we're going in - it's either -1 or 1.
*/
void rungekutta(int dir, int i, int j)
{
 temp_density[j] = calc_density(X, temperature[i - dir] + dT[j],

pressure[i - dir] + dP[j]);
 temp_radius[j] = dm[i] * calc_radius_dif(radius[i - dir] + dR[j],

*ptr_density);
 temp_pressure[j] = dm[i] * calc_pressure_dif(mass[i - dir] +

dM[j], radius[i - dir] + dR[j]);
 temp_opacity[j] = calc_opacity(X, *ptr_density, temperature[i -

The Stellar Computer

Page 33

dir] + dT[j]);
 temp_temperature[j] = dm[i] * calc_temperature_dif(temperature[i -

dir] + dT[j], *ptr_opacity, luminosity[i - dir] + dL[j],
radius[i - dir] + dR[j], mass[i - dir] + dM[j], pressure[i -
dir] + dP[j], old_temperature, old_pressure, i);

 temp_energy[j] = calc_energy_generation(temperature[i - dir] +
dT[j], *ptr_density, X, Y);

 temp_luminosity[j] = dm[i] * calc_luminosity_dif(*ptr_energy);

};

