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Dr. J. McGovern 
 
Books: 
Mandl, "Statistical Physics" 
Bowley &^ Sanchez, "Introductory Statistical Physics" 
(Adkins, "Equilibrium Thermodynamics" 
Zemansky & Dittman, "Heat and Thermomechanics") 
 
1. The First Law of Thermodynamics 
1.1 Recap of First Law 
(Mandel 1.2, B&S 1.5, Adkins 3.1-4, Z. 4.1-6) 
There is a property of systems called their internal energy, E. E is a "function of state", i.e. its' 
value only depends on the current state of the system and not its' history. Pressure, volume, 
temperature and entropy are all functions of state. 
For a non-ferromagnet, the magnetization is a function of state, but for a ferromagnet M depends 
on history and is not a function of state. 
There are two ways of changing E: by transferring heat (random motion of molecules) or by doing 
work (ordered macroscopic chance e.g. applying a force). 
DE =Q +W  
Where Q is the heat added TO the system, and W the work done ON the system. D is the 
change in the energy, Efinal - Einitial . 
If only the initial and final states are seen, there is no way to tell how the energy was added. 
Many different combinations of heating and doing work can end in the same change of state. Q 
and W are not function of state. We can't say that a body has so much heat in it - only energy. 
 
Look at two methods of keeping a gas at the same temp, but doubling the volume. Either an 
insulated box with a devision in it to start with, removing the devision to double the space. Q =0, 
W =0, hence DE =0. 
Alternatively, have a piston with the gas in contact with a reservoir at constant temperature. Move 
the piston backwards slowly, doubling the volume. Temperature will remain the same. 
W =- ! dx#  
But DE =0 still (function of state). So Q = W , Q +W =0. 
 
1.2 First Law for small changes 
(Mandel 1.3, B&S 1.5) 
dE =dQ + dW  
d is the infinitesimal change in E, while d is the infinitesimal amount of heat and work. Use d to 
indicate amounts, not changes in functions of state. 
Mathematical analogy: if we write df =3y 2 dx + 6xydy  we can ask if a function f x,y^ h exists of 
which this is the exact (or perfect) differential. 
If there is then 
3y 2=

2x
2f

 
and 
6xy =

2y
2f

 
f x,y^ h=3xy 2+ const.. 
Check; 

2x2y
22 f

=
2y2x
22 f

 
so 

2y
2
3y 2^ h=

2x
2
6xy^ h

 
Yes, 6y. 
On the other hand; 
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df =2ydx + 5xydy  is not an exact differential. 

2y
2
2y^ h!

2x
2
5xy^ h

 
3y 2 dx  and 6xydy  are not perfect differentials, but the sum is. 
As dE =dQ + dW . 
dE# =DE

 
(finite change of energy). 
dQ# =Q

 
(finite amount of heat.) 
 
1.3 Cycles 
A cycle is a set of changes to a system in which it passes through intermediate, different states, 
but returns to the original state. 
All functions of state - V, P, T, E - are the same at the end as at the beginning. 
If DE =0, then 
dQ# + dW# =0

. 
However, 
dQ# ! 0

 
and 
dW# ! 0

. 
cf: heat engine. Q1 in, Q2 out: 
dQ# =Q1- Q2. 

Total work done by the system is; 
- dW# =Q1- Q2. 
 
1.4 Work 
(Adkins 3.5, Z. 3, Mandel 1.3, B&S 1.6) 
1.4.1 Fluid 
This is a liquid or a gas. 
Again consider a container with a piston, containing a gas/liquid at P, V. Force applied is F, the 
piston moves a distance dx  into the container. 
For compression, F $ PA where A is the area of the piston. 
The work done on the system is 
dW =Fdx $ PAdx  
This is a decrease in volume, - dv . 
dW $ - Pdv  
This will be greater than zero for compression. 
The minimum work will require very slow compression and no friction. In that case, F =PA plus 
an infinitesimal amount. An infinitesimal decrease in F would change the direction from 
compression to expansion. 
This is called a reversible process. 
dWrev =- PdV  
 
Processes are normally drawn on a P-V plot, with a starting point, and a path P V] g^ h leading up 
to some ending point. The work done is the area under the curve (from V1 to V2). The sign 
depends on the direction of the process. 
For instance, an isothermal process for an ideal gas: 
PV = nRT

P =
V

nRT
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W =- nRT
V

dV

V1

V2

# =- nRT ln
V1

V2c m<0^ h
 

Or: adiabatic (ideal gas). 
PV c = const.

c = cv
cp

W =- P1V1

V c

dV
V1

V2

#
 

But note that adiabatic means that Q =0. So W =DE = cv T 2 - T1^ h. 
(Enough work will show that the two expressions are the same.) 
Also, you can go between the start and the end points via a variety of different paths (e.g. 
constant P, then constant V. Or both changing at the same time. Or …). In all of these cases, 
different amounts of heat will have been put in, and different amounts of work will be done. For a 
given change in state, W can vary but W +Q  is constant. 
 
1.4.2 Stretching a wire 
If the tension in the wire is denoted by C  and the change in length dl , then dW =Cdl . 
 
1.4.3 Stretching a Surface. 
F =cL  
c  is the surface tension. 
dW =Fdx =cLdx =cdA 
 
1.4.4 Magnetic Work 
(Mandel 1.4, B&S appendix A. Different expressions in different books) 
dW =- n oVM.dB =- VM.dH   
for a weak paramagnet. 
M << n o B 
so  
n o B . H . 
 
1.5 Temperature 
(Mandel 1.2, B&S 1.2, Adkins Ch. 2, Z. Ch. 1) 
1.5.1 The Zeroth Law 
If two bodies are brought into thermal contact and do not change as a result, they are said to be 
in thermal equilibrium. There will be no net heat flow between them. 
The Zeroth law states: If body A is separately in thermal equilibrium with bodies B and C, then B 
and C are also in thermal equilibrium. 
This allows us to define something measurable called temperature: A, B and C are at the same 
temperature. If A is something which changes visibly, say a column of mercury or a gas in a 
balloon, it can be used as a thermoscope. 
Bodies can be ordered by their temperature using the thermoscope. 
 
1.5.2 Temperature Scales 
Early temperature scales led to the discovery of Boyle's Law: if 2 "flexible" containers with the 
same amount of gas in them were in thermal equilibrium, the product of their pressure and 
volume was the same. A possible temperature scale is where T is proportional to PV. 
Boyle's Law held best in the low pressure limit, where all gases approach ideal gases. 
In 1954, the ideal gas temperature scale was adopted. Inherent is this scale is the idea of 
absolute zero - a minimum temperature where PV " 0. Therefore to set a scale, only one 
reference point is needed. This is taken to be the triple point of water. At this point, ice, water and 
vapour all coexist. The corresponding pressure is ~600Pa. The temperature is defined to be 
273.16k . 
T = lim

P " 0 PV] g
triple po int

PV x273.16k
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This agrees with the centigrade degree to a 5 figure accuracy. 
With that definition of the scale; 
PV = nRT  
R =8.314 J mol - 1K - 1 
n is the number of moles of gas. 
For future reference; 
PV =NkT  
where k is Boltzman's constant. 
k =

NA

R
=1.381x10 - 23 JK - 1=8.62eV K - 1

. 

kT  is a measure of the molecular thermal energy. It is approximately 40
1
eV  at room temperature. 

 
2. The Second Law 
2.1 Heat Engines and Refrigerators 
(Adkins 4.8, Z. 6.1-5) 
The Otto Cycle. 
e.g. car engine. 
1  2, Adabatic compression. 
3  4 Adiabatic expansion, at hotter T that the original compression. QH  is put into the system. 
2  3, the volume stays constant but heat is absorbed. 
4  1 Cooling back to the original temperature with Qc  discarded. 
 
All useful engines work in cycles, returning to their initial condition. 
The total useful work done is the area bounded by the curve on the PV plot, 
PdV# . 

By the first law, work done is QH - QC . 
The efficiency of the engine is; 
h =

QH

W

 
This is always less than 1. 
For an Otto cycle; 

h =1 -
V1

V2
c m

c - 1

=1 -
T 2

T1

 
Note that; 
h < 1 -

Th

Tc

 
where Tc  is the coldest temperature T1, and TH  is the hottest temperature, T 3. 
Because Qc  is non-zero, a heat engine running in reverse will pump heat from a cold reservoir to 
a hot one. 
 
The efficiency of a heat pump is defined as; 
h pump=

W
QH

 >1 by definition. 
h fridge=

W
QC

 >1 usually. 
In general; 

h =
cos tly input
useful output

 
A fridge and a heat pump are not dissimilar in idealistic conditions - they are just being used for 
different things. 
A reversible heat engine run in reverse is a heat pump (or fridge). The signs of W, QH  and QC  all 
change, but the magnitudes don't. 
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h rev
pump=W

QH

h rev

engine=QC

W

h rev
pump= h kv

engine

1

 
 
Carnot Engine: ideal gas 
See website for picture. 
4 steps: 
1) Isothermal compression at Tc  =T1=T 2^ h 
2) Adiabatic compression 
3) Isothermal expansion at TH . =T 3=T 4^ h 
4) Adiabatic expansion 
pV =nRT  
Adiabatic stages: TV c - 1= const. (Related to PV c = const.). 
During the stage 2-3; 
T 2V2

c - 1

=T 3V3

c - 1

V3

V2
=
TC

TH
c m

c - 1

1

 
For stages 4-1: 
T 4V4

c - 1

=T1V1

c - 1

V4

V1
=
TC

TH
c m

c - 1

1

 
So; 

V3

V2
=
V4

V1

V1

V2
=
V4

V3

 
 
1) Adiabatic 
W 1=- PdV

V1

V2

#
 

and 
P =

V

nRTc

 
Which gives; 

W 1=- nRTc ln
V1

V2
c m

 
DE =0

Q1=+ nRTc ln
V1

V2
c m

 
2) 
Q2=0

W 2=DE = cv TH - Tc^ h 
3) 

W 3=- nRTH ln
V3

V4
c m=- nRTH ln

V2

V1
c m

Q3=+ nRTH ln
V2

V1
c m

 
4) 
Q4=0

w 4= cv Tc - TH^ h 
So the work done by the engine is; 
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Wi

i = 1

4

!
 

Which is equal to; 
- W 1- W 3=nR TH - TC^ hln

V2

V1c m> 0
 

QH =Q3=nRTH ln
V2

V1
c m

 
Qc =- Q1 
h =

QH

W
=

TH

TH - TC
=1 -

TH

TC
< 1

 
Note: this only works when T is in Kelvin, not Celsius. 
 
2.2 The Second Law of Thermodynamics 
Kelvin-Planck: 
It is impossible to construct an engine which, operating in a cycle, will produce no other effect 
than the extraction of heat from a reservoir and the performance of an equivalent amount of work. 
 
Clausius: 
It is impossible to construct a refrigerator which, operating in a cycle, will produce no other effect 
than the transfer of heat from a cooler body to a hotter one. 
 
2.3 Carnot Engines & Cycles 
A Carnot cycle is any cycle that satisfies two criteria; 
1) Reversible 
2) Uses only two reservoirs, and hence exchanges heat with those during two isothermal steps. 
The other steps must therefore be adiabatic. Note that only heat exchange between bodies at the 
same temperature is reversible. 
The nature of the working fluid - gas, liquid etc - is unimportant. Can even involve magnetic rather 
than hydrodynamic processes. 
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In this image, the green engines / pumps are Carnot, and the brown ones are irreversible. 
A carnot engine is more efficient than an irreversible engine: 
1. Carnot point; 
h pump= h carnot

1

 
working alongside an irreversible engine h E . 
We need QH ' $ QH  or we would have net heat flow from the cold reservoir to the hot one, 
violating Claussius. 
From the first law, QH - Qc=W =QH ' - QC '. So; 

QH '

W
=
QH

W
QH'

QH

. 

QH'

QH
# 1

 
So h engine # h carnot . 
2. Carnot engine and irreversible pump h pump . 
There we need QH $ QH '' to avoid violating Claussius. 
Now ; 

W

QH ''
=
W

QH

QH

QH ''

 

QH

QH ''
# 1

 
h pump # h carnot

1

 
So the Carnot engine is more efficient than an irreversible one either as an engine or as a pump. 
If we allow the second engine to also be reversible, there can be no net heat transfer in either 
case. QH ' =QH =QH ''. In this case, the equalities are satisfied. 
So all Carnot engines have the same efficiency when working between the same reservoirs. 
For the ideal gas; 
h =1 -

TH

TC

 
This holds for all carnot engines. 
Note that by definition; 
h =

QH

W
=

QH

QH - QC
=1 -

QH

QC

 
Thus; 

TH

TC
=
QH

QC

 
or; 

TC

QC
=
TH

QH

. 
 
Example of a heat engine calculation; 
Want to site a power station by a river to use river water as a coolant as the cool reservoir (at 10 
degrees C) 
Environmental concerns limit QC  to 1MW . How much power can we extract with unlimited fuel in 
a furnace at 400 degrees C? 
1) QH - QC =W  (First Law) 

2) TC

QC
=
TH

QH

 (Carnot Engine / 2nd law) 
3) QC=1MW  
W =QH - QC =

TC

TH QC - QC =
TC

TH
- 1c mQC =1.3MW

 
 
2.4 Thermodynamic Temperature 
Adkins 4.5-5, ZZ 7.5, B&S 2.3 
Because all carnot engines have the same efficiency, we can deduce that this depends only on 
TH  and TC  (even if we hadn't calculated it). This could form the basis of a new temperature scale. 
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We can show that if temperatures are denoted by i H  and i C  (in arbitrary units) 

h =1 -
H i H^ h

H i C^ h

 
So H  can be used as a new scale. 
Proof (using the above picture); 
Define a new function f i c , i H^ h so that QC = f i c , i H^ hQH  for any Carnot engine. 
Look at the right hand side of the above picture. 
h =1 - f i C , i H^ h

W =hQH  
Using the left hand side; 
First engine: 
Q3= f i 3 , i H^ hQH

WA= 1 - f i 3 , i H^ h_ i QH  
Second engine; 
QC = f i c , i H^ hQ3= f i c , i 3^ hf i 3 , i H^ hQH

WB= 1 - f i c , i 3^ h_ i Q3

WA +WB= 1 - f i c , i 3^ hf i 3 i H^ h_ i QH =hQH  
But the combined engine is just a complicated carnot engine acting between QH  and QC , just like 
the right hand side. So it' efficiency bust be h =1 - f i C , i H^ h. 
Comparing these, we have; 
f i C , i 3^ hf i 3 , i H^ h= f i C , i H^ h 
This is independent of i 3. 
Therefore; 

f i 1, i 3^ h=
H i 2^ h

H i 1^ h

h i C , i H^ h=1 -
H i H^ h

H i C^ h

 
However if we measure the temperature on the ideal gas scale, we know that; 
h i C , i H^ h=1 -

TH

TC

 
So the ideal gas and thermodynamic scales are proportional, and can be taken to be identical. 
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2.5 Entropy 

 
 
Clausius's Theorem says that the sum of the heat added to a system during a cycle, weighted by 
the temperature of which it is added, is equal or greater than 0. 

T

dQ
# # 0

 
We can do work W sys  and add heat Qsys  to the system. The heat is added at an instantaneous 
temperature T via a Carnot engine which extracts Qres from a heat bath at To. 
If we add dQsys  to the system, then we extract dQres  from the reservoir. 

dQ res

dQsys

=
To

T

 
At the end of a cycle of the system, both the system and the engine are in their original states, so 
the net energy must be zero. 
Qres +W carnot +W sys=0 
Either we put in less work than we get out; W carnot +W sys < 0 in which case Qres > 0, or we put 
more work in than we get out. W carnot +W sys > 0 and Qres < 0. 
The first possibility violates Kelvin-Planck, so we must have Qres# 0. 
Qres= dQres# =To

T
dQsys

# # 0

To > 0 so
T
dQsys

# # 0
 

So far we have not specified reversible or irreversible. If we carry out the cycle very slowly with a 
frictionless piston the cycle will be reversed. Therefore we could run the system in reverse, 
reversing all energy flows but without changing their magnitude. 
Qres$ 0

T
dQsys

# $ 0
 

Only compatible with Clausius's theorem if the equality holds. 

T

dQrev

# =0
 

Consider a cycle consisting of two reversible paths between two points. 
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T

dQrev

# =
T

dQrev

a

# +
T

dQrev

b

# =0

0 = a

T

dQ rev

1

2

# + b

T

dQ rev

2

1

#

a

T

dQ rev

1

2

# = b

T

dQ rev

1

2

#
 

Therefore it is path independent. 
There must be a new function of state, S, so that; 

T

dQ rev

1

2

# =S 2 - S1

 
Now consider a reversible path followed by an irreversible one. 

 

T

dQrev

# # 0
 

0 $
T

dQ rev

1 I

2

# +
T

dQrev

2 R

1

#

T

dQ rev

1 I

2

# =
T

dQrev

1 R

2

#
 

Adiabatic process dQ =0. 

T

dQ

1

2

# =0
 

DS $ 0 
For any isolated system, the entropy cannot decrease. 
 
2.6 Examples of Entropy change 
1) Heat flow 
Imagine that an amount of heat d Q  is transferred from a body at T1 to another at T 2. 
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dS 1]g$ -
T1

d Q

dS 2]g$
T 2

d Q

dS 1 + 2] g$ d Q
T 2

1 -
T1

1c m

dS 1 + 2] g$ 0  
if T 2# T1 
We know that spontaneous transfer will only happen if T 2# T1 - accompanied by an increase in 
the overall entropy. 
 
2) 2 blocks, heat capacity C, one at 100 oC , the other at 0 oC . Bring them together - what will 
happen? 
We know that they will exchange heat till the temperature is equal. 
The first saw tells us that since they are identical blocks, the amount of heat gained in one will be 
equal and opposite to the amount of heat lost by one, so they will both end up at 50 oC , Q =50xC  
having been exchanged. 
What is the entropy change? 
Take the blocks one at a time. 
The hot block: 

DS =
T

d Qrev

#
 

While this is not a reversible process, we know the initial and endpoints of the process. As the 
entropy change only depends on these, we can use a reversible process between these states to 
get the same results. 
DS =

T

CdT

Ti

Tf

# =C ln
Ti

Tf

DS =C ln
373

323
< 0  

For the cold block; 
DS =C ln

Ti

Tf

DS =C ln
273

323
> 0 

The total entropy change; 
DS H + C] g=C ln

373x273

3232

>=0.024C > 00 
The units of entropy are JK - 1, and are the same as for the heat capacity. 
Note that C is the specific heat capacity of the block, while c is per unit mass and thus you would 
need to know the mass of the block. 
 
3) Ideal gas confined to one half of an adiabatic container, then the partition is removed. 
We know that the gas will expand to fill the entire container. 
Entropy change? 

We can't use ds = T

d Qrev

 directly, as this is an irreversible process. But an isothermal, reversible 
expansion connects the same two endpoints, so we can use that process instead. 
W =- PdV# =- nRT ln

V1

V2

DE =0

Q =- W =nRT ln
V1

V2

DS =
T

d Qrev

# =
T
1

d Qrev# =
T

Qrev

=nR ln
V1

V2

 
In each case, the entropy change of the gas is the same for the irreversible process. But for the 
irreversible case, the system is isolated and there is no other entropy change that takes place. 
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For the reversible case, heat is removed from the heat bath at the same temperature and 
DSbath=- DSgas . DSuniverse=0 
In all cases, spontaneous changes are associated with entropy increase. 
In any system that starts off out of equilibrium, the system will evolve with an increase of entropy 
until no further increase is possible. 
Note that a reversible adiabatic process must happen at constant entropy of the system. 
In these contexts, we use the term "universe" to represent the system, and any surroundings that 
have any influence on the system. 
 
2.7 The Fundamental Thermodynamic Relation 
This is a restatement of the first law. 
dE = d Q + dW = d Qrev + dW rev

dE =TdS - pdV fluid^ h

dE =TdS + Cdl Stretched string^ h

dE =TdS - VMdB Magnetic material,alsowritten mdB^ h 
M is the magnetic moment per unit volume, while V is just the amount of matter. 
Note that dE =TdS - pdV  holds for any process, since T, S, P and V are all functions of state. 
 
2.8 Thermodynamic Potentials 
(Mandl 4.4, B&S 2.6, Adkins 7.2, Z 10.1) 
Define Enthalpy as H =E + PV . From dE =TdS - pdV  and d PV] g= dP^ hV + dV^ hP , we get; 
dH =TdS + VdP . 
i.e. the natural variables that the system changes with is volume and entropy. 
Helmholz Free Energy; 
F =E - TS  
dF =- SdT - pdV  
Gibbs Free Energy; 
G =E - TS + PV  
dG =- Sdt + VdP  
 
Energy vs. Enthalpy; 
dE =dQrev - PdV

dH =dQrev + VdP  
Heat capacity; 
c =

dT

dQrev

 
So; 

cv =
dT
dQrev

V

=
2T
2E

V

cp=
dT
dQrev

p

=
2T
2H

p  
The difference between the two is the work done pushing aside the atmosphere. 
 
2.10 Use of Gibbs Free Energy in Phase Transitions 
Adkins 10.4-5, Z. 11.3-4, Mandl 8.2-4, B&S 11.4-5 
Here we are considering systems with one component (i.e. one substance), but more than one 
phase (e.g. gas, liquid, solid, …) 
Controlled temperature To and pressure Po . 
The phases have different entropies, energies and volumes (per unit mass). In general, they will 
also have different Gibbs Free Energies. 

Let g = m
G

 (Gibbs Free Energy per unit mass, or the specific Gibbs Free Energy.) 
The total Gibbs Free Energy is; 
G =m1g1+m2 g 2 
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(Let liquid water be phase 1, and water vapour be phase 2) 
If some of the material changes phase; 
If the two phases are in equilibrium, there is no net change of mass. That happens if g1=g 2. 
So the phase coexistence line on the PT plot is the line at which the specific Gibbs free energies 
of the two phases is the same. 

 
We can derive an expression for the slope of these phase coexistence lines. This is called the 
Clausius-Clapeyron Equation. 

 
g1

a]g
=g 2

a]g

g1
b]g
=g 2

b]g

dg1
a " b

=dg 2

a " b

dg =- sdT + vdP

s = m
S

v = m
V

dg1- dg 2=- s1- s 2^ hdT + v 1- v 2^ hdP =0 

dT

dP
=
v 1- v 2
s1- s 2

=
V1- V2

S1- S2

 
Note that these are changes during the phase transition. 
A phase transition is an isothermal transition.  
S1 - S2=

T

L
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where L is the latent heat. 
Remember that; 
DS =

T

Q

 
for isothermal transitions. 
So finally; 

dT

dP
=
TDV

L

 
This is the Clausius-Clapeyron equation. 
Hints; 
L and DV  must refer to the same amount of "stuff" 
DV !

Dt

m

DV =
t 1

m
-

t 2

m

 
 
2.9 Approach to Equilibrium 
Adkins 10.2, Mandl 4.6 
Clausius: for an isolated system, equilibrium is the state with maximized entropy. 
Consider a system in contact with a heat bath at temperature To, and pressure Po . 
Suppose that during some spontaneous change heat Q is absorbed by the system, and the 
volume changes by DV . In this case, for the volume to change work of Po DV  is done by the 
system on the surroundings so W =- Po DV . 
Also by Clauseus; 
The entropy change of the system and the surroundings must be greater than, or equal to, 0. 
DSsystem -

To

Q
$ 0

 
where Q/T is the entropy decrease of the surroundings. 
Q =DE + Po DV

DS -
To

1 DE + Po DV^ h $ 0

- D E - ToS + PoV^ h $ 0  
So the "availability" 
A = E - ToS + PoV^ h 
must be minimized. A # 0. 
The system will evolve to minimize its' "availability". 
The availability is so-called as it relates to the maximum work out of the system. 
Note that if the system starts at the same temperature and pressure as its' surroundings; To=T , 
Po=P . A =G . DG # 0. 
If in addition the volume is unchanged, DV =0. A =F . DF # 0. 
If also the system is isolated, so DE =0. DS $ 0 as expected. 
 
2.11 Useful Work 
If we have a system out of equilibrium with its surroundings, how much useful work can we 
extract from it as it equilibriates? 
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Two reasons why we can't use all of the change in energy DE  to do useful work; 
1) work is wasted pushing aside the atmosphere at Po . 
2) Heat must leak to the surroundings to increase their entropy compensating for the entropy 
decrease of the system. 
DE =Q +W =Q - Po DV - W useful  
Work is done by the system. 
But the heat exchanged with the surroundings has to be such that; 
DS -

To

Q
$ 0

 
So; 
Q # To DS  
So; 
W useful # - DE - To DS + Po DV^ h=DA 
So the change in availability is related to the amount of useful work that can be extracted. 
Example (from Mandl 4.7) 
How much work can be extracted from cooling 1 mole of a perfect gas at constant volume from 
an initial temperature T to a final temperature To the temperature of the surroundings. 
W max=- DE + To DS  
For a perfect (ideal) gas; 
DE = cv DT

DS =- cv ln
To

T

 
W max= cv T - To - To cv ln

To

T
c m

 
this is greater than 0 if T > To . 
(Probably an exam question on this!) 
 
2.12 Maxwell Relations 
Adkins 7.3, Mandl 4.1&4.5, B&S 2.6, Z. 10.5 
Remember dE =Tds - pdV .  If we want to regard E as depending on S and V, then; 
dE =

2S

2E

V

+
2V

2E

S  
Thus; 
T =

2S
2E

V

p =-
2V
2E

S  

2V

2T

s

=
2S2V

22E
=
2V2S

22E
=-

2S

2P

V

2V

2T

s

=-
2S

2P

V  
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From dF =- SdT - pdV  
S =-

2T

2F

V

P =-
2V

2F

T

2V

2S

T

=
2T

2P

V  
dH =TdS + VdP

2P

2T

S

=
2S

2V

P

dG =- SdT + VdP

2P

2S

T

= -
2T

2V

P  
The second and third of these are the most useful. 
The main use is to write derivates of S with respect to P and V in terms of measurable or 
calculable quantities. 
 
2.13 Heat Capacities 
Mandl 5.3, Adkins 8.1, B&S 2.5, 2.6 
Heat capacity; 
C =

dT

dQrev

 
C will be used for an extensive quantity, while c will be used fro the specific heat capacity. C =nc  
or C =mc  depending on whether the specific heat capacity is per mole or kg. 
The heat capacity is not path-independent. There is no such thing as the heat capacity. 
The most useful are; 

cv =
dT
dQrev

v

=T
dT
dS

v

c p=
dT
dQrev

p

=T
dT
dS

p  
cp=

dT
dQrev

p

=
2T
2E

P

+ P
2T
2V

P

cv =
2T
2E

V

dE =
2T
2E

V

dT +
2V
2E

T

dV
 

It is only for an ideal gas that; 

2V

2E

T

=0
 

and dE = cv dT . 
 
Relation between cp and cV . 
Starting with S T,V^ h 
dS =

dT

dS

V

dT +
dV

dS

T

dV

dS =
T

cv
dT +

dT

dP

V

dV
 

Also from S T,P^ h; 
dS =

T
cp
dT -

2T
2V

P

dP
 

Equating and rearranging; 

cp - cv^ hdT =T
2T
2V

P

dP +
2T
2P

V

dVd n
 



PC 2352 - Thermal and Statistical Physics - Notes 

  17 
 

Holding either V or P fixed; 
cp - cv^ h=T

2T
2V

P 2T
2P

V  
If the equation of state is known, we can calculate this (check that we get nR  for an ideal gas) 
Also; 

c p - cv =-

2P
2V

T

T
2T
2V

P

d n

2

 

V

1

2T

2V

P  
is the isobaric thermal expansivity a . 
-
V

1

2P

2V

T  
is the isothermal compressibility l T . 
cp - cv =VT l T

a 2

> 0 
 
In exam papers; 
"By considering the entropy as a function of temperature and length" means; 
dS =

2T

2S

L

dT +
2L

2S

T

dL
 

 
3. Statistical Theory of Thermodynamics 
Mandl 2.3, B&S 1.2, Kittel & Kroemer 1.2 
 
What is the basis of Entropy? 
Why does it increase? 
Can we derive the equation of state for a system from first principles? 
 
3.1 Microstates and Macrostates 
Mandl 2.1-2, B&S 4.1 
If we have an isolated system in equilibrium, then we can say everything that is to be known 
about it by specifying a few bulk quantities. There are a handful of equations that can calculate 
the rest. And as the system is in equilibrium, these don't change with time. 
This is a macrostate, and is what we've known up until now as the state of the system. 
 
If we look at what underlies the system, we know that it is not in fact one completely uniform 
substance down all sizes, but is made up of atoms etc. that are not in a stationary state. These 
are not only moving, but constantly interacting. If one were to state what was happening to every 
particle, not only would the description of the system be very complex but it would be constantly 
changing. 
A microstate is a description of the system an the microscopic level, where the position and 
momentum (or quantum state) of each particle is specified. This description would be immensely 
detailed and would change very frequently. Yet all of these changes on the microscopic level are 
not evident on the macroscopic state. So huge numbers of microstates must all correspond to the 
same macrostate. 
For the checkerboard, a "macrostate" is specified by the total number of green and blue counters; 
a "microstate" by the colour of counter occupying each numbered square. Even for a 6x6 board, 
there are as many as 1010 microstates for each macrostate. 
Even though all microstates are equally probable, some macrostates (those with roughly equal 
numbers of green and blue) are much more likely than others). 
The principle of equal apriori (i.e. in the absence of other information) probabilities: all microstates 
of an isolated system are consistent with the constraints of total energy and volume are equally 
likely. 
If the total number of such microstates is X , then the probability of the ith state; 
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Pi =
X

1

 
X N,E,V^ h for a fluid. 
We calculate the macroscopic value of an observable by averaging over the value of each 
microstate. 
<x >= pi X i

i

!
 

Where <x > is the "ensemble average" macroscopic value, and X i  the value in the ith state.  
<x >=

X

1
X i

i

!
 

It is worth pointing out philosophically that this theory is very hard to prove, due to the rapid 
changes within the system (approximately every 10 - 34 seconds a collision will occur within a 
system). 
 
3.2 The statistical basis of entropy and the approach to equilibrium 
Suppose there is some macroscopic property of the system - a  - not determined by E, V, N (the 
appropriate variables for an isolated system.). The number of microstates is a function of a : 
X E,V,N,a^ h. The most probable macrostate (i.e. value of a ) is the one that maximizes the 
number of microstates, i.e.; 

da

dX
=0 

This will happen at a o , where X  is the largest. 
If we start the system at some value of a ! a o , then the random evolution of microstates is more 
likely to load to an a  closer to a o  (where there are more microstates) than to a  further from a o  
(where there are fewer microstates) 
Once the system reaches a - a o  then fluctuations to either side are equally likely and no further 
evolution takes place. This is equilibrium - the macrostate with the most microstates. 
 
Is X  equivalent to entropy? 
No: if we double N, E and V then we would expect to double the entropy - it is extensive. 
However the number of microstates twice the size of the original one is X 2. 
Instead, suggest that; 
S = k B lnX  
Constant of proportionality turns out to be k B  for correspondence with classical thermodynamics. 
 
3.3 The Spin- 1 2 Paramagnet (Ideal) 
For our purposes, a paramagnet is a collection of small magnets that prefer to align themselves 
with an external magnetic field. It is a lattice of spin- 1 2 particles that do not interact. 
In the absence of a magnetic field, the energy is independent of the orientation of the spins. 
Macroscopically, all we measure is the total magnetization. 
m = n/ - n0^ hn = 2n/ - N^ hn  
E ! E m] g 
Microscopically we can specify whether the spin at each lattice position is up or down. 
For 3 spins, the macrostates are m =3n ,n , - n , - 3n . 
3n : / / / 
n : / / 0 / 0 / 0 / / 
- n : 0 0 / 0 / 0 / 0 0 
- 3n : 0 0 0 
So the most probable are n  and - n . 
What about N spins with n/ up. and n0=N - n/? 
X N,n/^ h=

n/ ! N - n/^ h!

N!

 
where N! is the number if distinguishable, n/ ! is swapping up's, and N - n/^ h! is swapping down. 
the function 

n/! N - n/^ h!

N!
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is a very sharply peaked function of n, centered on 
n =

2

N

 
Magnetization of 0 is overwhelmingly likely if N is large. 
Useful approximations; 
- Sterling's approximation; 
N! - 2r N NN e - N  
ln N!] g - N lnN - N +

2

1
ln 2r N^ h

 
The last term can almost always be ignored. 
 

X N,n^ h ,
r N
2c m

2

1

2N e -
N

2 n -
2

N^ h
2

 
(See K&K "sharpness of multiplicity function) 
This is a Gaussian with mean of N/2. 

v =
2

N

 
So; 

n

v
=
N

N
=

N

1

 
Probability of deviations: 
1v =33%

2v =4.6%

3v =0.27%

10v =1.5x10 - 23

100v =10 - 2173  

n

100v
=

N

100

 
For N ~1024; 
100v =10 - 10N  
Even incredibly rare fluctuations of 100v  would be unobservable for macroscopic systems. 
Equilibrium really does appear to be static and unchanging. 
 
3.4 Temperature and Pressure 
How can macroscopic properties such as temperature and pressure be derived from a 
microscopic consideration? 
Imagine a single system split in two by a partition that allows heat to flow across it, and can move 
back and forward depending on the conditions of either side. Isolated system. Energy E, volume 
V. The system is split such that the first partition has E1, V1 and E 2, V2. E and V are fixed, but 
each side can vary as heat is passed through the dividing wall, and as the wall moves. 
dE 2=- dE1 
dV2=- dV1 
The number of microstates of the whole system can be written in terms of the microstates on 
either side, and hence can be X =X 1X 2 
So the entropy is; 
S E1,E 2 ,V1,V2^ h=S1 E1,V1^ h+ S2 E 2 ,V2^ h 
dS =

2E1

2S

E2 ,V1 ,V2

dE1+
2E 2

2S

E1 ,V1 ,V2

dE 2+
2V1

2S

E1 ,E2 ,V2

dV1+
2V2

2S

E1 ,E2 ,V1

dV2

 
dS =

2E1

2S1

E2 ,V1 ,V2

-
2E 2

2S2

E1 ,V1 ,V2

e odE1+
2V1

2S1

E1 ,E2 ,V2

-
2V2

2S2

E1 ,E2 ,V1

e odV1

 
Entopy will increase until further infinitesimal shifts of energy and volume no longer change it; 
dS =0 at equilibrium for dE1 ! 0, dV1 ! 0. 
So; 
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2E1

2S1

V1

=
2E 2

2S2

V2  
Exchanging heat no longer changes entropy. 

2V1

2S1

E1

=
2V2

2S2

E2  
Exchanging volume no longer changes entropy. 
So 

2E

2S

V  
has something to do with temperature, and  

2V

2S

E  
has something to do with pressure. 
Even without classical thermodynamics and the experience of heat engines, we can establish the 
existence of things that represent volume and temperature increase. 
If we define; 

T

1
=
2E

2S

V  
and 

T

P
=
2V

2S

E  
Then; 
dS =

T

dE
+

T

PdV

 
Or; 
E =Tds - PdV  
These are called the statistical definitions of pressure and temperature. They differ from the 
normal ones in that they can be defined for an isolated system. 
If we have a system of fixed E and V, and we can calculate S, we can find P and T. 
 
e.g. first attempt at ideal gas 
We can easily deduce the dependance on V. Imagine splitting a finite volume into many tiny cells, 
each of volume DV . Make sure that it is sufficiently that there will be approximately one molecule 
per volume. 
Take a single atom that can be in any one of the V/DV  cells. N atoms: each can be in any one of 
the cells. 

X ~
DV
V

c m

N

S =K lnX =Nk ln
DV
V

c m+ volume independant terms
 

The non-interacting part is hidden in the first equation. 
 
Also; 

T
P

=
2V
2S

E

=
V
nk

pV =nkT  
(and Nk =nR ) 
 
Another example: a spin- 1 2 paramagnet in a magnetic field 
The energy depends on the magnetic field. So n - spin-up, and N - n - spun-down. 
E =- nn -B + n N - n -^ hB =n N - 2n -^ hB =- mB] g 
So if we fix the energy, we fix the number of up states. 
The number of microstates for a given E (and hence n -) is; 
X n -^ h=

n -! N - n -^ h!

N!

 
So; 
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S E] g= k lnX = k ln
n - ! N - n -^ h!

N!
d n

 
Using Stirling's approximation for a large number of spins, we have; 
lnN! =N lnN - N  
S = k N lnN - N - n - lnn - - n -^ h- N - n -^ hln N - n -^ h- N - n -^ h_ i` j

S = k N lnN - n - lnn - - N - n -^ hln N - n -^ h_ i  
 

T

1
=
2E

2S

B 

T

1
=
2E
2S

B

=
2n -

2S

N
2E

2n -

B

n - =
2

1
N -

nB
E

d n
 

After a few steps; 

T

1
=
2nB

k
ln
N - n -

n -
c m

 
(See example 13) 

n -

n .
=e -

kT

2nB

=e -
kT

DE

 
Note that 2nB is the amount by which the energy of the down spin is higher than that of the up 
spin. 
 
Also, from 
dS =

T

dE
+
T

m
dB 

we see that 

T

m
=
2B

2S

E

=
2n -

2S

N
2B

2n -

E,N

m =-
B

E

 
(missing a few steps) 
or E =- mB as we know. 
 
4. Boltzman Distribution 
- Non isolated systems. 
 
4.1 System in contact with a heat bath 
Mandl 2.5, B&S 5.1, K&K 3. 

  
 
R is the reservoir and S the system. 
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System + reservoir = single isolated "supersystem" to which we can apply the ideas of the 
previous section. Total energy Eo, system energy f << Eo. 
What is the probability that the system is in a particular microstate with energy f ? 
(Not what is the probability that the system will have energy f  - that depends on how many such 
microstates there are.) 
The number of microstates of the supersystem which have this particular microstate for the 
system is just; 
X res Eo - f^ h 
So the probability is; 

P f] g=
X total f o^ h

X res Eo - f^ h

 (1) 
Write 
X res Eo - f^ h=e kB

1
Sres Eo - f] g^ h (2) 

and using f << Eo; 

Sres Eo - f^ h=Sres f o^ h- f
dE

dSres

Eo

+
2

f 2

dE 2

d 2Sres

Eo

+ ...
  

dE

dSrev

N,V

=
TKS

1

 
So; 

2E 2

22S
=
2E

2

T

1
b l =

T 2

1

2E

2T

V

=-
T 2Cv

1

 
Therefore; 

k B

Sres
Eo - f^ h=

k B

Sres
Eo^ h-

k B

f
-
k B

2

T 2

f 2

Cv

res

k B

 (3) 
Now Cv - NkB when N is the number of atoms of the system, and is large. 
So; 

CV

k B
~
N

1

 
which tends to 0 for a macroscopic reservoir. 
Taylor expansion is good and we can drop all but the first two terms. 
From (1), (2) and (3); 

P f] g=
X total Eo^ h

e kB

Sres Eo] g
e -

KB T

f

 
The first factors of the top and bottom rows are the same for all microstates. All that is important 
is; 
P f] gG e -

KBT

f

 
This is the Boltzman distribution. 
Since 
Pi

i

! =1
 

we have; 

Pi =
e -

KBT

e j

j

!

e -
kB T

f i

 
Although the Boltzman distribution applies to macroscopic systems, for weakly interacting atoms 
in a gas or paramagnet we can also apply it to individual atoms (with rest acting as the reservoir). 
So for instance for the paramagnet, a single atom just has two states - where f - =- nB and down 
where f . =+ nB. 

P- =
e KBT

nB

+ e -
KB T

nB
e -

kB T

- nB] g

P. =
e -

KB T

nB

+ e KBT

nB
e kB T

- nB] g

 
and 
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P-

P.
=e -

kB T

2nB

=
n -

n .

 
for a large system. 
This is as before. 
Note that; 

P-

P.
< 1

 
always. 
hence there are always more particles in the lower energy state (up) than the higher energy state 
(down). This is counter-intuitive. 
As T3 ,  

P-

P.
" 1

 
Not to 3 . 
 

 
 
4.2 Partition function 
Mandl 2.5, B&S 5.2, K&K ch. 3 
The denominator in the Boltzman distribution is called the partition function 
Z = e -

KkB T

f i

i

!
 

this is the sum over all microstates of the system. 
"Just" a normalization constant. 
However, Z is a function of T and - through f i  - of B or V, and all the macroscopic properties of 
the system can be derived from it (P, S, E, M) 
For instance: the energy. <E> is the ensemble average for o copies of the system, with o i =Pi o 
in each microstates. 

<E >=
o

o i f i

i

!
= Pi f i

i

!
. 

<E >= f i

e -
xB T

f j

j

!

e -
kB T

f i

i

! =
e -

kB T

f j

j

!

f i e -
kB T

f i

i

!

 
Let; 
b =

kT

1

 
So; 
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<E >=
e - f j b

j

!

f i e - f i b

i

!

<E >=
Z

-
2b

2Z

<E >=-
2b

2lnZ

V,N  

We have 
 
P !( ) = const xe

"
!

k
B
T , the Boltzmann distribution. 

constant
  

=
1

Z
 

Z is the partition function 
 

= e
!
"

i

kT

i

#  i.e. the sum over all the microstates. 

  

< E >= !
i
P

i

i

" = #
$ lnZ

$%
 

Where 
  

! =
1

k
B
T

. 

May want the heat capacity. 

  

c
v
=
! < E >

!T
V

= k" 2 !
2
lnZ

!" 2
 

Fluctuations in E; 

  

!E( )
2

= E
2 " E

2

=
1

Z

#2
Z

#$ 2
" "

1

Z

#Z

#$
%
&'

(
)*

2

=
#2

lnZ

#$ 2

=
c

v

k$ 2
= k

B
T( )

2 c
v

k
B

 

But 
  
E ~ Nk

B
T  

So 
  

!E

E
=

1

N

. Again, 1 in  10
12 . 

For practical purposes, 
 
E ! E  

So the energy fluctuations are very little about its' average, and we often write E rather than 
 
E . 

 
4.3 Entropy and Helmholtz Free Energy 
(Mandl 2.5w B&S 5.3  6) 
Define entropyof a system as entropy of an ensemble of !  copies of the system divided by ! . As 
usual, have 

 
!

i
copies in each microstate, 

 
!

i
= P

i
! . 

The total number of microstates is the number of ways we can arrange this. 

 

!
"
=

" !

"
1
!"

2
!"

3
!...

 

where the bottom line is the number that are identical to each other. 
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ln!
"
= " ln" # " # "

1
ln"

1
#"

1
+ "

2
ln"

2
#"

2
+ ...$% &'

= " ln" # " # "
1
ln"

1

i

( + "
i

i

( = "( )

= # "
i
ln
"

i

"i

(

= #" P
i
lnP

i

i

(

S =
S

"

"
= #k

b
P

i
lnP

i

i

(

 

where the final sum is the sum over all microstates. 

cf isolated system; 
  

P
i
=

1

!
 

So 
  
S = k

B
ln!  as before. 

So for Boltzmann distribution; 

 

P
i
=

e
!"

i
#

Z
 

  

S = !k
B

P
i
"

i
# ! lnZ( )

i

$

= k
B
# E + k

B
lnZ

=
1

T
E + k

B
lnZ

 

So 
  
k

b
T lnZ =TS ! E = ! F  

or 
  

F = !k
B
T lnZ  

From 
 
dF = !SdT ! pdV ; 

 

S = !
"F

"T
V

 and 
 

P = !
"F

"V
T

 (or 
 

m = !
"F

"B
T

) 

Isolated system E, V fixed. 
  
!"S " P,T . 

Heat bath T, V fixed. 
  
Z ! F !S,P . 

(Note that Z depends on V (or ! ) through 
 
!

i
.) 

 
4.4 Spin 1/2 paramagnet at temperature T 
(Mandl ch. 3, B&S 5.7, K&K ch. 3) 
 
N spins in a magnetic field B either up 

 
E = !µB( )  or down 

 
E = +µB( ) . For a single spin; 

  

Z
1
= e

+µB
+ e

!µB
= 2cosh

µB

k
B
T

"

#$
%

&'
 

  

E = P
i
!

i

i

" =
1

Z
#µBe

+µB$
+ µBe

#µB$( )

= #µB
2sinhµB$
2coshµB$

= #µB tanh
µB

k
B
T

%

&'
(

)*

 

Alternative method; 
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E = !
" lnZ

"#
= !

1

Z

"Z

"#
=

!1

2coshµB#
2µBsinhµB#

= !µB tanh
µB

k
B
T

$

%&
'

()
= !µB tanhµB#

 

 

  

T ! 0 " ! #( ), P
$
!1, P

%
! 0, E ! &

$
= 'µB

T ! # " ! 0( ), P
$
! 0.5, P

%
! 0.5, E ! 0

 

  

c
v
=
! E

!T
= "µB

"µB

k
B
T

2

#

$
%

&

'
(

1

cosh
2 µB

k
B
T

#

$%
&

'(

= k
B

µB

k
B
T

#

$%
&

'(

2

1

cosh
2 µB

k
B
T

#

$%
&

'(

 

 

  
T ! 0, cosh! 0, c

v
! 0  - universal. 

  
T ! " , c

v
! 0  - not universal. Only when there is a finite number of microstates (here 2). 

  
T ! 0, k

B
T << µB  
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Spin-flips happen when 

  
k

B
T << 2µB  so an increase in temperature doesn't significantly change 

 
n
!

 or 
 
n
!

. So 
  

dE

dT
~ 0  (universal). 

At high temp, 
  

P
!
" P

#
" 1

2
 but 

 
P
!

 never rises above 
 

1
2

. Again, it is hard for the system to 

absorb energy. 

  

dE

dT
! 0  again. 

This is not universal as it requires a "highest energy" - if there is not one, then there arealways 
higher energy levels a particle can be promoted into. 

  

c
v
=

k

3

µB

kT

!
"#

$
%&

2

 (since 
  

cosh
µB

kT

!
"#

$
%&
'1) 

  

c
v
!

1

T
2

 (Pierre Curie) 

Assume all along that 
  
E

N
= NE

1
, 
  
c

v( )
N
= N c

v( )
1
 etc. 

This is reasonable for non-interacting or weakly-interacting particles. However, suppose we want 
to work with the partition function of the whole system. We could have started with 

 
Z

N
, the N-

particle particle partition funtion. 
e.g.   N = 2 . 4 states. 

  
Z

2
= e

! !2µB( )"
+ e

0
+ e

0
+ e

!2µB"
= e

2µB"
+ 2 + e

!2µB"
= e

2µB"
+ e

!2µB"( )
2

= Z
1

2  

In general, 
  
Z

N
= Z

1
( )

N

. 
This is true for distinguishable particles. 

So the energy 
  

E
N

= !
" lnZ

N

"#
= N E

1
 as 

  
lnZ

N
= N lnZ

1
 

 
Helmholtz free energy; 

   

F = !kT lnZ
N
= !NkT ln 2cosh

µB

k
B
T

"

#$
%

&'

S = !
(F

(T
B

= Nk
B

ln 2cosh
µB

k
B
T

"

#$
%

&'
"

#
$

%

&
' + Nk

B
T !

µB

k
B
T

2

"

#
$

%

&
'

=!
NµB

T

! "## $##

sinh
µB

k
B
T

"

#$
%

&'

cosh
µB

k
B
T

"

#$
%

&'

tanh
µB

k
B
T

"

#
$

%

&
'

! "## $##

= !
F

T
+

E

T

"
#$

%
&'
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T ! 0 " ! #( )   and 

  

sinh
µB

k
B
T

!

"#
$

%&
' e

µ(B . Therefore 
  

tanh
µB

k
B
T

!

"#
$

%&
'1 . 

  

S ! kN lne

µB

k
B
T

"

#
$

%

&
'

(
µNB

T
= 0  

Obvious as all the spins are up - no disorder. 

 
T ! " # ! "( )  

  

cosh
µB

k
B
T

!

"#
$

%&
'1, 

  
tanh! µB"  

  

S ! Nk
B

ln2 + 0
1

T
2

"
#$

%
&'

 

As expected because in this case up and down are degenerate and all microstates are equally 
likely. 
  !" = 2

N  and   S = Nk ln2 . 

 
For an ideal paramagnet,   S = Nk ln2  for all T but any real one will have a weak force aligning the 
spins and at low enough T this will cause alignment and   S ! 0  as   T ! 0 . (This is general). 

  

M
m
= !

"F

"B
T

= +
"

"B
NkT ln 2coshµB#( )( )

= Nµ tanh
µB

kT

= !
E

B

 

as expected 
 
E = !mB( ) . 

 
4.5 Applications of the Paramagnet - Adiabatic cooling and the third law 
(Mandl 5.6) 
 

 
By magnetising and demagnetizing a sample we can cool it. 
1) Start at 

  
B

1
 and increase the magnetic field to 

  
B

2
 at constant temperature. System has become 

more ordered.  S ! . 
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2) Isolate the system and slowly demagnetize to 
  
B

1
. Reversible adiabatic  constant S. 

Temperature decreases. 

 
Entropy unchanged; 

 
n
!

and 
 
n
!

 unchanged - consistent with Boltzman but at a lower temperature. 

Since 
 

S = S
B

T

!
"#

$
%&

 halving B will halve T. 

Could repeat with a fraction of the sample (the rest acting as the heat bath in step one). But soon 
we gain less and less in each step. Cannot reach   T = 0  in a finite number of steps. 
Since   T ! 0  behaviour of entropy curves in universal so is the unattainability of   T = 0  - third law 
of thermodynamics. 
 
4.6.1 Vibrational energy of a diatomic molecule 

Vibrational energy levels of a single molecule are 
   

E
n
= n +

1

2

!
"#

$
%&
!'  where 

 

! =
k

µ
 (k is the spring 

constant). 

   

Z
1
= e

!E
n
"

n=0

#

$

= e
!

1

2
!%"

+ e
!

3

2
!%"

+ e
!

5

2
!%"

= e
!

1

2
!%"

1+ e
!!%"

+ e
!2!%"

+ ...( )

 

This is   1+ x + x
2
+ x

3
+ ...  where 

  x = e
!!µ" . This is the same as 

  

1

1! x
. 

Hence; 

   

Z
1
=

e
!

1

2
!"#

1! e
!!"#

=
1

2sinh
!"#

2

E
1
= !

$ lnZ
1

$#
= +

$
$#

ln 2sinh
!"#

2

%
&'

(
)*

=
!"
2

coth
!"#

2

%
&'

(
)*

 

As 
  
T ! 0 " ! # , 

  

coth
!!"

2

#
$%

&
'(
)1, 

   

E
1
!

1

2
!" . 
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At lower temperatures, all molecules are in the ground state. 

  
T ! " # ! 0 . 

  

coth
!!"

2

#
$%

&
'(
)

2

!!"
, 
  
E

1
! k

B
T  

(Note 
 
c

v
! k

B
, not to 0. This is because this system does not have a finite number of levels.) 

 
4.6.1 Rotational energy levels 

Here the energy levels are 
   

L L +1( )!2

2I
. 

  

L
2

2I
=

1

2
I! 2

"

#$
%

&'
 

 
!

o
 occurs just once. 

  
m

L
= 0( )  

 
!

1
 occurs 3 times. 

  
m

L
= ±1,0( )  

 
!

2
 occurs 5 times 

  
m

L
= ±2,±1,0( )  

 
!

L
 occurs 

  
2L +1( )  times. (degeneracy) 

 

  

Z
1
= e

!"
i
#

i

$ = e
!"

L
#

m
L
=!L

L

$
L=0

%

$ = 2L +1( )e!"
L
#

L=0

%

$  

Note that in general we can write 

 

Z = e
!"

i
#

i

$ = g "( )e!"#

"

$  

(sum over states  sum over energy) 
where 

 
g !( )  is the degeneracy - the number of states with the same energy. 

   
Z

1
= 1+ 3e

!
!

2"

I + 5e
!

3!
2"

I + ...  

If 
   

k
B
T ~
!

2

I
 we can sum terms until they become very smooth, then neglect the rest. 

But if 
   

k
B
T >>

!
2

I
 (this turns out to be a few Kelvin), we can replace the sum over closely spaced 

states with an integral. 

   
Z

1
= 2L +1( )e

!L L+1( )
!

2"
I dL

0

#

$  

Let; 

  

L L +1( ) = x

2L +1( )dL = dx

 

   

Z
1
=

I

!
2!

 

So the energy is; 

  

E
1
= !

1

Z
1

"Z
1

"#
=

1

#
= k

B
T  

 
4.7 Translational energy of an atom or molecule 
(Mandl 7.1 4 + appendix B1&2, B&S 5.92 7.2, K&K ch. 3) 
Particle in a cuboid box; 

  
! = Asin k

x
x( )sin k

y
y( )sin k

z
z( )  
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where in order to satisfy boundary conditions; 

 

k
x
=

n
x
!

L
x

, 
 

k
y
=

n
y
!

L
y

, 
 

k
z
=

n
z
!

L
z

 where L is the length of the box in that direction. 

Satisfies 
   

!!
2

2m
"

2
# = E# . 

  
k 2

= k
x

2
+ k

y

2
+ k

z

2  

If 

   

E =
!

2

2m
k

x

2
+ k

y

2
+ k

z

2( ) =
!

2k 2

2m

=
!

2! 2

2m

n
x

2

L
x

2
+

n
y

2

L
y

2
+

n
z

2

L
z

2

"

#
$

%

&
'

 

If 
 
L

x
= L

y
= L

z
 the states will be degenerate. 

  

Z
1
= e

!"
n

x
,n

y
,n

z( )
kT

n
x
,n

y
,n

z

#  

Note that the spacing of the energy levels, 
   

n ~
!

2
!

2

2mL
2

 is about   10
!18

eV  for   L ~ 1m . 

So any achievable value of T satisfies  kT >> !E and we can replace the sum 
  
n

x
,n

y
,n

z

! by an 

integral 
 

dn
x!  or by 

  

L
x

!
dk

x
0

"

#  to avoid issues with n being an integer. 

So; 

  

Z
1
=

L
x

!
"

#$
%

&'
L

y

!

"

#
$

%

&
'

L
z

!
"

#$
%

&'
e

() k
x
,k

y
,k

z( )*
dk

x0

+

, dk
y0

+

, dk
z0

+

,

=
V

! 3
e

() k( )*
k 2

sin-
k
dk

0

!
2, d-

k0

!
2, d.

k0

+

,
 

where V is 1/8 of a full sphere, the limits are due to the fact that we are integrating over the 
positive octant of the sphere, and 

 
! k( )  is independent of the angle. 

 
!

k
 and 

 
!

k
 are the angles the 

vector k makes. 

  

Z
1
=

4!
8

V

! 3
k

2
e

"# k( )$
dk

0

%

&

= D k( )e"# k( )$
dk

0

%

&
 

where 
 
D k( )  is called the "density of state". 

  

D k( ) =
V

2!
2

k
2  

So 
   

Z
1
=

V

2! 2
k

2
e

"
!

2
k

2#
2m dk

0

$

% =V
m

2!
2#!

&

'(
)

*+

3
2

 

using 
  

e
!"k

2

dk
0

#

$ =
1

2

%

"
 and 

  

k
2
e

!"k
2

dk
0

#

$ = !
%

%"
e

!"k
2

dk$ =
1

4"

&

"
. 

For 
  
Z

1
 to be dimensionless, 

   

mkT

2!
2!

"
#$

%
&'

3
2

 must have dimensions of   m
!3 . This is the same 

dimensions as a number density. Call it 
 
n

Q
 (as it appears less frequently) so that 

  
Z

1
=Vn

Q
. 

This is the "Quantum concentration" or density. 
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So 
  

E
1
= !

" lnZ
1

"#
=

3

2

1

#
=

3

2
k

B
T  

 
4.8 Equipartition 
(Mandl 7.9, B&S 5.14) 
Last 3 results are examples of equipartition. For each degree of freedom that is quadratic in the 
energy or momentum, the average energy is 

  

1
2

k
B
T  and the contibution to the heat capacity 

 
c

v
 

is 
  

1
2

k
B

. 

- Vibration 
   

E =
1

2
m !r

2
+

1

2
kr

2  2dof  E = kT . 

- Rotation 
  

E =
1

2
I!

1

2
+

1

2
I!

2

2  2dof  E = kT  

- Translational 
  
E =

1

2
m v

x

2
+ v

y

2
+ v

z

2( )  3dof 
  

E =
3

2
kT  

Classical theorem, and holds only if  kT >> !"  the spacing between quantum energy levels. 
In all cases we saw that equipartition breaks down for  kT ! "#  and as   T ! 0 , 

  
c

v
! 0  "frozen 

out". 

Vibration; 
   

T >>
!!

k
~

few * 0.1eV

k
~ 10

3
k  

Rotation; 
   

T >>
!

2

Tk
~ few k  

Translational; 
   

T >>
!

2

2mv
2

3

~ 10
!14

k  

 
Example of a non-quadratic (linear) dof is the translational energy of an ultra-relativistic particle. 

  
E 2

= p2c2
+ m2c4  

 
  
E ! pc = !ck  

   

Z
1
= D k( )! e

"#c$k
dk =

V

% 2

1

!c$
&
'(

)
*+

3

E = 3k
B
T
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Aside on "density of states" 

From 
  
Z

1
= e

!" k( )#
D k( )dk

0

$

%  

 
D k( )dk is the number of states of the system with k between k and  k + dk  where 

 
dK >> !

L
 

 

 
"k-space" 

  

D k( )dk =
volume of 1

8
thof aspherical shell ink ! space

volumeper state ink ! space

=

1

8
4"k 2dk

"

L
x

"

L
y

"

L
z

=
Vk 2dk

2"
2

 

 
  

D K( ) =
Vk

2

2!
2

 

 
4.9 Ideal Gas (monatomic) 
(B&S 6.5, Mandl 7.1, 7.46, K&K 3) 
Single particle in a box; 

   

Z
1
=Vn

q
=V

mkT

2!!2

"
#$

%
&'

3
2

 

  
0.33n

Q
= !

T

"3  

where 
 
!

T
 is the de Broglie wavelength for a particle with thermal energy 

 
k

B
T  and mass m. 

Number of states available out to 
  

3
2

kT  is 
  
1.38N

Q
. 

If 
  
n ~ n

Q
 then quantum (interference) effects will be important. In this section we are only 

considering the classical regime. Details to follow. 
N particles in a box. 
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E
1
=

3

2
kT . Clearly 

  

E
N

=
3

2
NkT  which presumably we again get from 

  
Z

N
= Z

1
( )

N

. This is 

wrong. 
 
Consider Helmholtz free energy. 

  
F = !k

B
T lnZ

N
= !k

B
TN lnZ

1
= !k

B
TN lnV + lnn

Q
"# $%  

But   N lnV  is not extensive (
 
n

Q
 is intensive so 

  
N lnn

Q
 is OK). If we double N and V, F doesn't 

double. 
What might be wrong? 

  
Z

N
= Z

1
( )

N

 only holds for distinguishable particles. But atoms of the same element in the same 
internal state are not just practically but fundamentally indistinguishable. In a gas we can't use 
lattice position (coordinates) to label them.  
e.g. 2 particles, 2 energy levels. If they are distinguishable; 
Distinguishable; 4 states, energies 

 
0,!,!,2! . 

  
Z

2
= 1+ e

!"#
+ e

!"#
+ e

!2"#
= 1+ e

!"#( )
2

= Z
1

2  

 
Indistinguishable; 

  
Z

2
= 1+ e

!"#
+ e

!2"# $ Z
1

2  

If all the particles are in different 1-particle states, the expression 
  
Z

1

N   overcounts the contribution 

of that N-particle state to the partition function 
 
Z

N
 by   N ! . 

If the number of 1-particle states is much larger than the number of particles, it will be very 

uncommon for two particles to be in the same state and 
  

Z
N
=

Z
1

( )
N

N !
 will be a good approximation. 

Remember that 
 
n

Q
 was roughly the number of accessible (

  

E !
3

2
kT ) states in a gas. So the 

condition above translates into 
 
n << n

Q
 - classical regime. 

  

F = !kT lnZ
N

= !kT N lnZ
1
! lnN !( )

= !kTN lnZ
1
! lnN +1( )

= !kTN ln
V

N

"
#$

%
&'
+ lnn

Q
+1

"

#$
%

&'

 

  

V

N
=

1

n
 - intensive so 

  

N ln
V

N
 is extensive. 
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F = !kTN ln
n

Q

n
+1

"

#
$

%

&
' . 

It works! 

 

P = !
"F

"V
T

= +
kTN

V
 

Or  PV = NkT  (ideal gas) 

  

S = !
"F

"T
V

= +kN ln
n

Q

k
+1

#

$
%

&

'
( + kTN

" lnn
Q

"T

= +k
B
N ln

n
Q

n
+1

#

$
%

&

'
( +

3

2
k

B
N

= Nk
B

ln
n

Q

n
+

5

2

#

$
%

&

'
(

 

 > 0  for 
 
n << n

Q
 (only regime where it is valid) 

 
Sackeur-Tetrode 

This contains 
  

Nk
B

lnV !
3

2
lnT

"
#$

%
&'
+ ...  which gives 

  

!S = Nk
B

ln!V "
3

2
ln!T

#
$%

&
'(

 as required by 

classical thermodynamics. But now the absolute entropy is predicted. 
This agrees with measurements. 
 
4.10 Diatomic Gases 

  

! = !
trans

+ !
rot

+ !
vib

Z
N
=

Z
1

trans( )
N

Z
1

rot( )
N

Z
1

vib( )
N

N !

= Z
N

trans
Z

1

rot( )
N

Z
1

vib( )
N

F = F
trans

+ F
rot

+ F
vib

 

E and S add too. 
 
4.11 Maxwell-Boltzmann Distribution 
(Mandl 4.7, B&S 7.4, K&K chapter 14) 
What is the distribution of molecular speeds in an ideal gas? 
Probability of given velocity 

  
v

x
,v

y
,v

z( )  is; 

  

P v
x
,v

y
,v

z( ) =
e

!
1

2
mv2"

Z
1

 

where 
  
Z

1
 is the translational partition function for 1 particle. 

(Provided 
  
v

x
,v

y
,v

z( )  is one of the allowed values 
  

v =
!

m
k , 

 

k =
n

x
!

L
x

+

n
y
!

L
y

+
n

z
!

L
z

"

#
$

%

&
' ) 

For speed however (not caring about direction); 

   

P v( )dv = P v ! v + dv( ) =
D k( )dke

"
!2

k
2

2m
#

Z
1

=

V

2$ 2
k

2
dke

"
!2

k
2

2m
#

Vn
Q

=
m

2$kT

%
&'

(
)*

3

2

4$

normalization

" #$$ %$$

v
2
e

"
1

2

mv
2

kTdv  
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where 
  

k =
mv

!
. 

The normalization constant can be reconstructed from 
  

p v( )dv! = 1 . 

(cf 
  
P r( ) = r

2 !
2

in 3D QM.) 

 

Most probable speed 
  

dP

dv
= 0   

  
v

p
=

2kT

M
. 

Average speed 
  

vP v( )dp
0

!

"   
  
v =

8kT

!m
= 1.13v

p
 

rms 
  

v
2
P v( )dv

0

!

"   
  

v 2
=

3kT

m
= 1.22v

p
 

  

1

2
m v

2
=

3

2
kT

!
"#

$
%&

 

 
2.14 Systems with more than one component 
(Mandl 8.1, B&S 2.9) 
From the considerations of entropy in section 3.4 "from entropy to temperature" we can deduce 

that particle flow across a permeable barrier in an isolated system will cease if 
  

!S

!N
E ,V

 matches on 

either side. This must correspond to some quantity in thermodynamics which governs particle 
flow, just as temperature governs heat flow. 

  

!S

!N
E ,V

= "
u

T
 c.f. 

  

!S

!V
E ,N

= +
p

T
 

µ  is called the "chemical potential". 

 

 

ds =
dE

T
+

PdV

T
!
µdN

T

dE =TdS ! PdV + µdN

 

  

µ =
!E

!N
S,V

 

 F = E !TS   
 
dF = !SdT ! pdV + µdN  

  

µ =
!F

!N
T ,V

 

 G = E !TS + PV   
 
dE = !SdT +VdP + µdN  
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µ =
!G

!N
P ,T

 

Note that in 
  
G ! G T,P,N( ) , T and P are intensive but G is extensive, as is N. 

So the dependence of G on N is linear. 
  
G = Ng P,T( )  where 

  
g P,T( )  is a form of specific Gibbs 

free energy (per molecule). 

But 
  

µ =
!G

!N
P ,T

= g ! So µ  is the Gibbs Free Energy per molecule. 

If we have more than one particle type present, we can write 

  
dG = !SdT +VdP + µ

1
dN

1
+ µ

2
dN

2
+ ... . Now with 2 extensive variables 

  
N

1
 and 

  
N

2
 we can no 

longer say that 
 
µ

1
 is the Gibbs free energy per molecule of type 1. 

Why is it called the chemical potential? 
Consider simplest chemical reachion 

  
A! B  

e.g. 
  
C

5
H

12
 

 
At constant T and P, which way will the reaction go? Need to minimize G. 

 
dG = µ

A
dN

A
+ µ

B
dN

B
 but 

 
dN

A
= !dN

B
 so 

 
dG = µ

A
! µ

B( )dN
A

 

  dG = 0   
 
µ

A
= µ

B
 

Equilibrium  equal chemical potentials. 

 
Also works for several reactants and products. 

  
A

1
+ A

2
+ ...! B

1
+ B

2
+ ...  

 

µ
A

i

i

! = µ
B

i

i

!  at equilibrium. 
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5. Systems with variable particle number and Quantum Statistics 
5.1 The Gibbs Distribution 
(Mandl 11.1, B&S 9.7-9.9, K&K 5) 
In the Boltzmann distribution, we wanted the probability that the system is in a microstate with 
energy 

 
E

i
 and particle number  N . This is proportional to the number of microstates of the 

reservoir with energy 
 
!

o
" !

i
 and particle number 

 
N

o
! N

i
. From   S = k ln! , 

  
!

res
"

o
# "

i
,N

o
# N

i( ) = e

S
res

"
o
#"

i
,N

o
#N

i( )
k

B

$

%
&
&

'

(
)
) . 

Expanded; 

   

S
res

= S !
o
,N

o( ) " E
i

#S

#E
N,V

1

T

!"#

" N
i

#S

#N
E ,V

"
µ

T

!"#

+ ...  

   

! = e

S
o

k e
"

1

k

#
i

T
"
µN

i

T

$

%
&

'

(
)
= const *e

"
#

i
"µN

i( )
k

B
T

p
i
=

e

" #
i
"µN

i( )
k

B
T

!

 

This is the Gibbs distribution, and is the same as the Boltzmann distribution, but has the number 
of particles also in the exponential. 
 !  is called the grand partition function. 

  

! = e
!
"

i
!µN

i( )
k

B
T

i

#  

The relevant ensemble is a collection of copies which can exchange energy and particles (grand 
canonical ensemble). 
(cf canonical for Boltzmann and microcanonical for isolated system.) 

 

x = P
i
X

i

i

!  

Some results which follow from the arguments analogous to the Boltzmann section. 

   

E ! µN = !
" ln!

"#
 

   

N = k
B
T
! ln!

!µ
 

   

S = !k
B

p
i
ln p

i
i

"

= !k
B

p
i
! E

i
! µN

i( )# ! ln!$% &'
i

"

= !k
B

! E # + µ N # ! ln!( )

=
1

T
E ! µ N + kT ln!$% &'

 

   

!kT ln! = E !T S ! µ N

= F ! µ N
 

We denote    !kT ln!  by 
 
!

G
 the "grand potential". 

 
(B&S use !  for ! . Mandl uses !  for 

 
!

G
.) 

 

 
!

G
= E "TS " µN  
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Now we are talking about classical potentials, so fluctuations can be ignored. 

 
d!

G
= dE "TdS "Sdt " µdN " Ndµ  

But 
 
dE =TdS ! pdV + µdN . So; 

 
d!

G
= "SdT " pdV " Ndµ  

 
  
!

G
T,V,µ( ) . 

  

S = !
"#

G

"T
V ,µ

, 
  

P = !
"#

G

"V
T ,µ

, 
  

N = !
"#

G

"µ
T ,V

. 

  
!

G
" !

G
T,V,µ( ) . But of these, T and µ are intensive. Only V is extensive. So, 

  
!

G
=Vf T,µ( ) . 

But 
  

!"
G

!V
T ,µ

= #P = f  

So 
 
!

G
= "PV ! 

While this isn't new, this doesn't mean it isn't a useful quantity to extract S, P and N from  ! . 
 

System Isolated Thermal Diffusive 
Fixed E, N, V T, N, V T, µ  V 
Distribution 

  
p

i
=

1

!
 

 

P
i
=

e
!E

i
"

Z
 

  

P
i
=

e
! E

i
!µN

i( )

!
 

Key microscopic function Number of 
microstates !  

Z partition function  !  grand potential 
function 

Key macroscopic function 
  
S = k

B
ln!  

  
F = !k

B
T lnZ  

   
!

B
= "k

B
T ln!  

 

  

1

T
=
!S

!E
N,V

P

T
=
!S

!V
E ,N

µ

T
= "

!S

!N
E ,V

 

  

S = !
"F

"T
N,V

P = !
"F

"V
N,T

µ =
"F

"N
T ,V

 

  

S = !
"#

G

"T
µ,V

P = !
"#

G

"V
µ,T

N = !
"#

G

"µ
T ,V

 

 
A site which can bind a single particle only and which is in contact with a solution or gas of that 
particle e.g. myoglobin binds 

  
O

2
 in contact with tissue fluid contaning dissolved 

  
O

2
 at a given 

chemical potential µ . 
2 states; 
- 0 particles bound,   E = 0 ,   N = 0 . 
- 1 particle bound.  E = ! ,   N = 1. 

   ! = e
! 0!0µ( )"

+ e
! #!1µ( )"

= 1+ e
! #!µ( )"  

   

P 0( ) =
1

!
, 
   

P 1( ) =
e

! "!µ( )#

!
. 

  

N = 0P 0( ) +1P 1( ) = P 1( ) =
1

e
!"µ( )#

+1

 

 
Second example; 
A site which can bind many particles, all with the same binding energy. 
States; 
0 particles,   E = 0  
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1 particle,  E = ! . 
2 particles,   E = 2!  
3 particles,   E = 3!  
… 

   ! = 1+ e
! "!µ( )#

+ e
!2 "!µ( )#

+ e
!3 "!µ( )#

+ ...  

cf 
  

1+ x + x
2
+ ... =

1

1! x
 

 
   

! =
1

1! e
! "!µ( )#

 

   

N = +k
B
T
! ln!

!µ
= "kT

!

!µ
1" e

" #"µ( )$( ) = "kT

0 + $e
" #"µ( )$( )

1" e
" #"µ( )$

=
1

e
#"µ( )$ "1

 

 
For the first example; 

 
For the second; 

 
Only makes sense for ! > µ . If energy cost of adding a particle is less than µ  infinitely many 
particles can be bound. 
 
5.3 Bosons and Fermions 
(Mandl 9.2, B&S 10.2) 

All quantum particles have spin which is an integer multiple of 
  

!

2
. 

Spin 0;   
4
He  is ground state, pion,   1H  in ground state, Higgs Boson. 

Spin 1/2;   
3
He  is ground state, quark, electron, neutrino, proton. 

Spin 1; Gluon, photon, W and Z bosons, !  meson, 1st excited state of   
4
He    

1
He  

Spin 3/2: !  baryon (excitations of protons and neutrons),   
5
He  

Spin 2; graviton,   
16

O  atom in ground state. 
Spin >2; many atoms and nuclei, but no elementary particles. 
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We classify these depending on whether the spin is integer, or odd half-integer. The first are 
bosons, the latter fermions. 
A collection of elementary particles is a fermion if it contains an odd number of elementary 
fermions (electrons, quarks). Excitation (e.g.   

4
He  from ground state to 1st excited state) doesn't 

change this. 
Fermions obey the Pauli exclusion principle - can't have more than one in any quantum state. 
Bosons don't - can have any number in the same state. 
For a single quantum state;  

either 
   ! = 1+ e

! "!µ( )#  and 
  

n ! N =
1

e
"#µ( )$

+1

 for  Fermi-Dirac statistics 

or 
   

! =
1

1! e
! "!µ( )#

 and 
  

n =
1

e
!"µ( )#

"1

 for Bose-Einstein statistics. 

 
5.3 Ideal gas without classical approximation 
(Mandl 11.2, 11.5, B&S 10.2-3) 
The grand partition function allows us to treat the ideal gas without requiring 

 
n << n

Q
. 

If the system consists of non-interacting particles, we can enumerate the single-particle states of 
the system (e.g. by specifying 

  
n

x
,n

y
,n

z
 in the wave function.) 

A microstate of the whole system is described by specifying the number of particles in each single 
particle state. 

   

! = e
! n

1
"

1
!µ( )+n

2
"

2
!µ( )+n

3
"

3
!µ( )+...( )#

n
i

$  

where 
 
n

i
 is the number of particle in each single particle state., and the total energy is 

  
n

1
!

1
+ n

2
!

2
+ n

3
!

3
 and the total particle number is 

  
n

1
+ n

2
+ n

3
+ ...  

   

! = e
!n

1
"

1
!µ( )#

e
!n

2
"

2
!µ( )#

...

n
i

$ = !
1
!

2
... = %

i
!

i
 

where 
 
!

i
 is the sum over all single-particle states / energy levels. 

Note factorization can only be done because 
  
n

1
+ n

2
+ n

3
+ ...  has not been fixed in advance - µ  

has been fixed instead. 

   

ln! = ln!
i

i

!

"
G
= "

G,i

i

!

N = #
$

$µ
#kT ln!( ) = kT

$ ln!
i

$µi

! = n
i

i

!

E = n
i
%

i

i

!

 

For a gas in 3D, we can replace the sum over levels by an integral weighted by the density of 
states. 

  

N = D k( )n k( )dk!
E = " k( )n k( )D k( )dk!

n k( ) =
1

e
" k( )#µ( )$

±1

 

(plus for Fermions, minus for bosons). 
For bosons, we need 

 
µ < !

min
 but for fermions µ can be positive or negative. 

 
Continued in PC3151. 
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5.4 Classical Approximation again 
(Mandl 11.4, B&S 10.2-3) 
If we have a large system, then we should recover our previous results for the classical limit 

 
n << n

Q
. 

   

!
G
= "kT ln! = "kT ln!

i

i

#  

   

!
i
=

1

e
! "

i
!µ( )#

!1

 bosons 

   
!

i
= 1+ e

! "
i
!µ( )#  fermions. 

   

!
G
= !kT ln 1± e

µ"#
i( )$( )

i

%  

Assume that   e
µ!

<<1 ( µ  large and negative). This will turn out to be the same as the classical 
limit. 
Use 

  
ln 1+ x( ) ! x . 

  

!
G
= "kT e

µ#
e

"$
i
#

i

% = "kTe
µ#

Z
1
 

This ends with the normal single particle partition function 
 
= vn

Q
. 

  

N = !
"#

G

"µ
= e

µ$
Z

1
 

  

µ = !kT ln
Z

1

N

"

#$
%

&'
= !kT ln

n
q

n

"

#
$

%

&
'  

So 
 
µ << 0  is the same as 

 
n

q
>> n  

 

Finally, 
  

F = !
G
+ µN = "NkT " NkT ln

Z
1

N

#

$%
&

'(
= "NkT ln

Z
1

N

#

$%
&

'(
+1

#

$
%

&

'
(  as before. 

 since F is the same, S, P and E will all be as before. 
 
Exam questions; 2003 Q1. 
a) 

 
!pdV"  

 W = !E "Q = !E  for adiabatic. 
b) THIS WILL PROBABLY BE ON THE EXAM! LEARN IT! 

  

!S = c ln
T

f

T
i

= c ln
T

0

T
1

 

 
W = !"A = ! "E !T

o
"S( ) = ! c T

o
!T

i( ) !T
o
"S( )  

c)  

 

dP

dT
=

L

T!V
 

e) 

  

1

T
=
!S

!E
V ,N

 

Q2; 
a) 
This will be easy when it's exam time…  
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b) 

  

dS =
!S

!T
P

dT +
!S

!P
S

dP

dS =
1

T
c

p
dT + "

!V

!T
p

dP

 

c) 
Reversible adiabatic    !S = 0 . 

   

c
p

TT
1

T
2

! dT = "
#V

#T
P

a+bP

!

$

%

&
&
&

'

(

)
)
)

dP
P

1

P
2

!  

Answer will turn out to be in atmospheres * … 
Need to multiply by   1.0135x10

5  to get SI units. 
 
3) 
a) 

 

P
i
=

e
!E"

Z
 

 

Z = e
!"

i
#

i

$  

Sketch derivation done for Boltzmann, revised for Gibbs. 

 
P

i
E( ) !"

res
E

o
# E( )  

where 
 
!

res
= e

S

k
B  

Expand S about 
 
S E

o( )  

Boltzmann factor comes from 
  

!S

!E
V

=
1

T
 

 
!

res
" e

#
E

k
B
T  

b) 

  

Z
1
= g E( )e!E"

E

#  

where g is the degeneracy factor. 

  

Z
1
= n +1( )e!n"#

n

$  

Geometric series with  x = e
!"# . 

  

! Z
1
=

1

1" e
"#$( )

2
 

c) 

  

E = !
" lnZ

1

"#
= 2

"

"#
ln 1! $!$#( )( ) = 2$

e
$# !1

 

  T ! 0 , !" # $ ,   e
!"
>>1. 

  
E ! 2"e

#"$ % 0  
100% probability of being in the lowest state. 

 T ! " , 
  

e
!" #1+

!

kT
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E ! 2k

B
T . 

System with 4 degrees of freedom. What you would expect for a 2D harmonic oscillator. 
d) 

 

c
v
=
!E

!T
 

Low temp limit. 
Use   E = 2!e

"!# . 

  
! c

v
= 7.4x10

"7
k

B
. 

 
4) 

 
F = ! L  

 
dW = Fdx = ! Ldx = ! dA  

 
dE =TdS + ! dA   TdS + !dL   TdS ! mdB  

 F = E !TS  

 
dF = !SdT + " dA  

 

S = !
"F

"T
A

 

 

! =
"F

"A
T

 

b) 
Aside: 

 
Z = D k( )e!" k( )#

dk$  
   

! k( ) =
!

2
k

2

2m
 or 

  !ck  

 

D k( ) =
A

!
kdk  in 2D. 

  

V

2!
2

k
2
dk  in 3D. 

Question; 

  
F = !kT lnZ

N
 where 

  

Z
N
=

Z
1

( )
N

N !
 

c) 

Non-relativistic 
 

! = "
NkT

A
 
 
! A = "NkT  is the equation of state for a 2D gas. 

 E = NkT  2 degrees of freedom, quadratic. 

Relativistic;  
 

! = "
NkT

A
   E = 2NkT  equipartition doesn't hold as they are not quadratic degrees of 

freedom. 
 
2002, question 4; 

It is not permissible to use 
  

Z
N
=

Z
1

( )
N

N !
 in this question. Just count the states and their energies, 

and write down the partition function as a sum. 
 


