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1. Introduction 
Lecturer: Dr. Myfanwy Bryce (mbryce@ast.man.ac.uk) 
 
Consider a volume of gas. We know that real systems are made up of molecules or atoms 
(particles) which are in a state of constant random motion e.g. Brownian motion. It is the 
motions of these individual particles which give rise to the bulk quantities we use in 
thermodynamics, e.g. Pressure, Internal Energy, etc. 
 
1.1 Bulk Properties of a Gas 
− Volume 
− Pressure  Force per unit area. Arises from random motions. 

A particle collides with the wall of the container – it rebounds so there is a change in 
momentum. Therefore it exerts a force on the wall. If we sum up all such individual forces 
over a period of time Δt we get the total force on the wall and hence the pressure. 

− Temperature  related to random motions. High temperature  we have particles with 
large 

 
E

k
 so they are moving at high speed. In solids, vibrational energy is important. 

− Internal Energy U  the sum of the energies associated with all the individual particles 
(Translational, rotational, vibrational,

 
E

p
) 

U =
mv

2

2
!  

These quantities define the state of the system we are studying. The system is the thing we 
are studying (usually a mass of gas). Everything else is the surroundings. 
 
A system can be open (physically connected to the surroundings) or closed (Not open; no 
physical exchange with the surroundings). It can also be thermally isolated, when it cannot 
exchange heat with the surroundings (aka adiabatic), or thermally contacted where it can 
exchange heat with the surroundings. 

 
1.2 Equation of State 

This is an equation which describes the state of the system in terms of bulk parameters (state 
variables). E.g.: 

pV = nRT = NkBT  
the Ideal Gas equation, or Van der Waal’s equation: 

P +
an

2

V
2

!
"#

$
%&
V ' nb( ) = nRT  

where a and b are empirical constants, i.e. the values depend on the particular gas in the 
system. 
 
A simple equation of state for a solid is 

V = V
0
1+ ! T " T

0( ) " k P " P
0( )( )  

where β and k are constants which depend on the material. 
 
Simple systems can be fully defined if we know any two of the state variables. The equation 
of state will give us the third providing the system is thermal equilibrium. 

 
1.3 Standard Temperature and Pressure (STP) 

This is when  

  

T = 0
o
C = 273.15k

P = 1atm = 10
5
Pa
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1.4 Phase diagrams 
e.g.: 

 
 
1.5 Heat Capacities 

This is the heat absorbed per unit rise in temperature (Kelvin) 
Specific heat capacity – c –

  
JK !1kg!1  

Molar heat capacity – C –  JK
!1

mol
!1  

 
1.6 Thermal Equilibrium 

For a system in thermal equilibrium: 
− Temperature does not vary with time 
− Temperature is constant throughout the system 
This implies that there is no current (flow) of heat through the system. 
 

 
This also implies that there is no bulk movement of particles. 

 
This strict definition of nothing changing makes it difficult in practice to achieve thermal 
equilibrium, e.g. the Earth’s atmosphere. However, we can “zoom in” on a relatively small 
part of the atmosphere where thermal equilibrium is near enough true. 
Thermal equilibrium is important as it means, provided pressure and volume are well defined, 
we can use equations of state (e.g. pV = nRT ) to analyse the system. 

P 

V 

T3 T2 T1 

Isotherms 

Not in thermal 
equilibrium 

Heat 

300oC 
T1 T2 

0oC 
Q 

Liquid Liquid 

Air Air 

Unsaturated Unsaturated 

Not in Thermal 
Equilibrium 

In Thermal 
Equilibrium 
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On the microscopic level, thermal equilibrium means that the system is in a state of maximum 
randomness – this means we can apply statistical arguments to predict large scale behavior 
by considering individual particles and then averaging over large numbers. 
 

2. Probability Distribution Functions 
Say we are studying a volume of gas at thermal equilibrium. We know that particles in that gas 
are moving with random speeds and in random directions, sharing or transferring energy by 
collision. How can we find the average speed of a molecule or the average

 
E

k
? 

If we know how
 
E

k
 is distributed between molecules then we can find the total internal energy 

U. 
We can look at an example which has nothing to do with thermal physics, to show how 
statistics can be applied to a whole range of problems, not just those presented in this course. 
 
2.1 Gaussian Distribution 

Say we are interested in the height of people. It is impractical to measure the height of 
everyone in the world so we take a sample – say 100. From this we can make a histogram to 
see what this tells us. We can group data into “bins”. To start with, we will use 2cm wide bins. 
The letters below correspond with those on the graphs on pages 3 and 4 of Handout 1. 
 
a) We can see from the histogram that the mean height is ~ 180cm, and the graph is not 

smooth. Very few people are either very tall or very small. 
b) This shows us a larger sample. It shows that if we use a much larger sample, the slope of 

the histogram becomes smoother. N here = 1,000,000. Notice that the y-axis scale has 
changed. 

c) Instead of plotting frequency on the y-axis we could plot the probability that any one 

measurement would lie in a particular bin, i.e. 
 
y =

N
i

N
= P

i
where Ni is the number of 

measurements in the ith bin, N the total number of measurements and Pi the probability that 
the measurement is in the ith bin. 
This graph looks the same as (b) apart from the numbers in the y-axis. 
We say that the histogram has been normalised to a population of 1. (If we calculate the 
area under the histogram it equals 1). 

d) What happens if we use a bin size of 0.5cm? The bins get narrower and there are fewer 
measurements in each bin. We still have a very large number of measurements so the 
histogram looks smaller than the previous one but the y-axis numbers have changed 
compared to (b). 

e) Plot probability instead of frequency – this means we have a graph which is still 
independent of the number of measurements, but we are still dependant on the bin size. 

f) It is more useful to plot the histogram so that the y-axis gives us the probability that a 
measurement lies in a bin of unit width (i.e. 1cm). We still have 0.5cm bins but even if we 
used 2cm bins again the y-axis stays the same. 

g) We can now make the bins infinitesimally small (providing N is still large) the histogram 
becomes a smooth line. 
Note that the y-axis is the same as (f). 

 
Now we are independent of N and Δh (bin size). If we know the function for this curve then 
we can apply the probabilities to any other ample of heights, e.g. if we have N=1000 
measurements we could predict how many would lie in any given range of heights. In this 
case: 

  

P h( ) =
1

2!"
e

#
h#h( )

2

2"2

$

%

&
&
&

'

(

)
)
)
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where
 
P h( )dh  is the probability that any one person has height in the range h ! h + dh . 

 
P h( ) is the probability per unit bin width. It has a unit of cm-1. 
The function has several names – the Normal, Gaussian or Bell curve. Any function which 
describes the probabilities for a particular situation is called a probability distribution function. 
 
The properties of a probability distribution function P(x) can be summarised as follows: 
1. The probability that a measurement of the quantity x will fall in the range of values 
x
1
! x

1
+ dx  is P x

1( )dx . 
2. If we make N measurements of x then the number of these measurements which will fall 

into the range x
1
! x

1
+ dx  is NP x

1( )dx . 
3. The probability that a measurement of x will have some value between -∞ and +∞ is 1 – it 

definitely has some value! 
This means that 

P x( )dx
!"

"

# = 1  

The area under the curve = 1 
The sum of the individual probabilities = 1. 

4. P x( )dx is dimensionless but the function P x( )  has units x( )
!1

. 
 
Such a function is said to be normalised. We can normalise a function as follows: 

Say f x( ) = Ae
!
x! x( )2

2"
2

 

Let f x( )dx
!"

"

# = 1  

Ae
!
x! x( )2

2" 2 dx
!#

#

$ = 1  

Substitute x ! x( ) = u  (to simplify the algebra) and use the standard integral  

e
!" x2

dx
!#

#

$ =
%

"
 

We get A e
!
u
2

2" 2 du
!#

#

$ = 1  

Hence A
!
1

2" 2

#
$%

&
'(

= 1  so A =
1

2!"
. 

 
2.2 Mean value 

We know that the average or mean value of a set of measurements is given by 

x =
1

N
x
i!  

(sum over all measurements), e.g. in heights example 

h =
1

100
h
i

i=1

100

!  

This quickly becomes impractical when N is large. We bin the data into bins of width Δx and 
find the mean value from 
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x =
1

N
x
j
N

j( )!  

This time the sum is over the number of bins
 
x

j
 is the average in the jth bin, and

 
N

j
 is the 

number of measurements in the jth bin. 

If we know the probability distribution function P(x) then N j
= P x

j( )N!x . 

 
The mean value of x is 

  

x =
1

N
x

j
N

j!

=
1

N
x

j
NP x

j( )"x!

= x
j
P x

j( )"x!

 

If N is very large and we make the bins very small !x" dx( )  

x = xP x( )dx
!"

"

#  

Note – in real situations we often only need to evaluate the integral from 0∞, e.g. the 
heights example. There is no such thing as a negative height so 

h = hP h( )dh
0

!

" . 

This works for any function of P(x) e.g. we want to find x2 . 

x
2
= x

2
P x( )dx

!"

"

#  

This works because P(x) is the same as P(x2). 
 
2.3 Variance and Standard Deviation 

We start by noting that any one measurement of a quantity x will differ from the mean value 
of a sample of N measurements by an amount x ! x( ) = d . We can find the average value of 
this difference from 

(d ) = S =
1

N
x
i
! x( )

i=1

N

"  

However this is not a very practical way to measure the average difference since the positive 
and negative values of d will cancel each other out. Instead we consider the square of the 
difference 

S
2
=
1

N
x ! x( )

2

i=1

N

"  

If we let N∞ then this quantity S2 is usually called σ2 – the Variance of the distribution. 
68% of all measurements of x will lie within ±!  of x . 
σ is called the Standard Deviation. 

  

!
2
=

1

N
x

i

2
" 2x

i
x + x

2( )
i=1

N

# =
1

N
x

i

2# "
1

N
2x

i
x# +

1

N
x

2#

= x
2
"

2x

N
x

i# +
1

N
Nx

2( )
= x

2
" 2x

2
+ x

2
= x

2
" x

2

 

Note x2 ! x 2 . 
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2.4 Probability Distribution Functions 
Now we look at some useful distribution functions which can be applied to situations in all 
areas of physics (not just thermal physics) and you will probably see them in lab. 
 
2.4.1 Gaussian Distribution 

  

P x( ) =
1

2!"
e

#
x# x( )

2

2"2

$

%

&
&
&

'

(

)
)
)
 

Remember a normalised distribution function has P x( )dx
!"

"

# = 1 . 

This is used when x is a real number (not an integer), and any single measurement of x is 
as likely to be larger than smaller than x . 
See Page 6, Handout 1 for graphs of this distribution. 

 
2.4.2. Binomial Distribution 

This applies to processes which can have two possible outcomes, which are usually called 
“true” or “false”. The classic example would be tossing a coin. Heads  true, tails  false. 
  P = 0.5 for both. 

  
P

true
= 0.5  

Binomial also applies just as well in cases where P
true

! 0.5  e.g. throwing a dice: 

Let true be a 1
  
P

1
= 1

6
. 

Let false be 2,3,4,5, or 6 (i.e. false, not 1).
  
P

false
= 5

6
. 

Binomial can tell us what to expect if we have more than one throw (trial). 
Say we throw six times. What is the probability that we throw exactly two ones? 
We split the problem into two parts – firstly combinations i.e. the number of ways to throw 
two ones from six throws. 
TTFFFF 
TFTFFF 
TFFTFF 
Etc. 
There are 15 ways in total. In shorthand we write: 
n
C
r
 The number of ways to get r true results from n trials. 

n
C
r
=

n!

r! n ! r( )!
 

In our example: 
6
C
2
=

6!

2! 6 ! 2( )!
= 15  

Secondly find the probability that we actually get one of these combinations. 

One way e.g. is TTFFFF. Probability = 
1

6
x
1

6
x
5

6
x
5

6
x
5

6
x
5

6
 ie. 

P
true

r
x 1! p

true( )
n! r( )
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In our case: 
1

6

!
"#

$
%&
2

5

6

!
"#

$
%&
4

= 0.01339  

Finally we combine the first and second steps to get the probability of obtaining exactly r 
successes (true outcomes) from n trials is 

  
P r n;p( ) = nC

r
pr

1! p( )
n!r"# $%  

In our example
  
P 2 6; 1

6( ) =6
C

2
1

6( )
2

5
6( )

4

= 0.2 . 

See page 7 of Handout 1 for graphs of this function. Note as n increases the shape of P(x) 
becomes more Gaussian-like. In the second column true is throwing a 2,3,4,5 or 6. 
 

2.4.3. Poisson distribution 

  
P r;!( ) =

!
r
e
"!

r !
 

This is a mathematical approximation to the Binomial distribution in the case where n∞, 
P0 (but 

 
np  stays constant). 

P r( )!
n
2

r!
p
r
e
"np  

If we write 
 
np = !  (= mean value) then we get the Poisson distribution. 

 
An example would be detecting radiation: 
We know a source emits 10 γ rays per second. We don’t know n – the number of times the 
atom has tried to emit a γ ray. 

  

P 0( ) =
1xe

!10

1
= 4.5x10

!5

P 12( ) =
10

12
e
!10

12!
= 0.09

 

NB: Poisson  Gaussian for largeλ. 
 
2.5 Central Limit Theorem (CLT) 

Or why everything in lab is Gaussian. Suppose we are measuring the current in a circuit 
using an analogue ammeter. There are several factors which affect our measurement of I : 
A) Parallax error in reading small needle position 
B) Needle wobbles 
C) Rounding error etc. 

  
I = I

true
+ A + B +C + ...  

Our value of I contains a combination of all these effects. To find the uncertainty in I we 
should consider the uncertainly of each factor and combining them using error propagation 
formula. 
The central limit theorem tells us that a measurement which depends on lots of independent 
factors will tend to follow a Gaussian distribution. If we plot several measurements of I the 
distribution curve would have a Gaussian shape. This is true even if the individual effects 
don’t have a Gaussian distribution. 
The CLT also states that: 

 
x = µ

i!  

where
 
µ

i
 is the mean value of the ith factor. 

 
I = I

true
+ A + B +C( )  
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2.6 Two or more independent probabilities 
Suppose we consider a particle with velocity 

  
v = v

x
î + v

y
ĵ + v

z
k̂  

What is the probability that the particle has speed 
 
v

x
 in the x-direction and, 

 
v

y
in the y-

direction and 
 
v

z
 in the z-direction? 

(By 
 
v

x
 we actually mean the velocity is in the range 

 
v

x
= v

x
+ dv

x
 etc.) 

We note that
 
v

x
, 
 
v

y
 and 

 
v

z
 are independent. 

  
P v( )dv = P V

x
,V

y
V

z( )dv
x
dv

y
dv

z
= P v

x( )dv
x
P v

y( )dv
y
P V

z( )dv
z

 

We can separate the total probability of three things into the product of the three (or n) 
separate probabilities. 
e.g. in Binomial Distribution: 

Probability of TTFFFF
 

=
1

6

1

6

5

6

5

6

5

6

5

6
. Each of the six throws is independent so the total 

probability is equal to the product of each individual probability. 
 
3. Boltzmann Distribution 

3.1 Boltzmann Factor 
This distribution is particularly important in thermal physics – it tells us how the energies of 
particles in a system at thermal equilibrium are distributed. The probability that a particle in 
such a system (e.g. air in a beaker etc.) has energy E (in the range

  
E

1
! E

1
+ dE ) depends 

on: 
1) The number of ways the particle can have this energy (these ways are called states) 
2) The probability that it is in a certain state 

E.g. in a simple monatomic system the particles all have
 
E

k
 given by

  

E
k
=

1

2
mv

2 . There are 

many ways (states) that it can have this energy – depending on the direction of
 
v .  

  
v

1
and

  
v

2
 represent two different states, but if 

  
v

1
= v

2
 then

  
E

1
= E

2
. 

The probability that a particle has energy E  
 
P E( )dE  decreases as E increases and 

increases as T increases. 

Boltzmann showed that
 
P E( ) ! e

"
E

kT . 

The term  e
!

E

kT  is called a Boltzmann factor. 
E can be any type of energy – translational, rotational, vibrational, potential, gravitational, 
electrical etc. 
k is Boltzmann’s constant, and has a value of   1.38x10

!23
Jk

!1  
T is the temperature of the system in Kelvin. 

 
3.2 Boltzmann Distribution 

 
P E( )dE ! e

"
E

kT dE  
We can use this relation to investigate the way that the speeds of molecules are distributed. 
We know the particles have

 
E

k
 due to the random motion and also have

 
E

p
 due to 

interactions with other particles, also excited states – extra energy is stored in the excited 
state. 
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Here we consider an ideal gas, therefore there is no intermolecular energies etc. All the 

energy is
  

E
K
=

1

2
mv

2 . We know that the speed of a molecule can vary continuously and is 

independent of position. The probability that a particle has energy E is proportional to the 

Boltzmann Factor
 
P E( ) ! e

"
E

kT . 

One way the particle has this energy is if its velocity components are 
  
v

x1
,v

y1
,v

z1
 and 

  
E

1
=

1

2
mv

1

2
=

1

2
m v

x1

2
+ v

y1

2
+ v

z1

2( ) . 

Thus
  
P E

1( )dE !P E
x1

,E
y1

,E
z1( )dE

x
dE

y
dE

z
. 

  
e
!

E
1

kT dE " e
!

mv
1

2

2kT dE = e
!

mv
x1

2kT e
!

mv
y1

2kT e
!

mv
z1

2kT dE
x
dE

y
dE

z
 

If we are only interested in the speed in the x-direction, we can separate this part out – 
because x, y and z directions are independent of each other. 

  
P E

x( )dE
x
! e

"
mv

x1

2

2kT dE
x

. 

Hence 
  
P v

x1( )dv
x
! e

"mv
x1

2

2kT dv
x
= Ae

"
mv

x1

2

2kT dv
x

 

Normalise to find 
  

A =
m

2!kT
 

Therefore 
  

P v
x( )dv =

m

2!kT
e
"

mv
x

2

2kT dv
x

 

Note that this function has the form of a Gaussian centred on
  
v

x
= 0 .

 

! =
kT

m
. 

 Most probable value of 
 
v

x
 is 0. 

 Mean value of 
  
v

x
= 0  (Particle is as likely to be moving in +x as –x direction) 

 Large positive or negative values of
 
v

x
are unlikely (few molecules have very high speeds) 

 If T increases then more molecules will have higher speeds (σ increases). 
 The mean value of 

  
v

x

2
! 0  which means that the mean KE (from motion in x direction) ≠ 0 

Similarly: 

  

P v
y( )dv

y
= Ae

!

mv
y

2

2kT dv
y

P v
z( )dv

z
= Ae

!
mv

z
2

2kT dv
z

 

where 
  

A =
m

2!kT
 in each case. 

Thus the probability that the particle is in the particular energy state E1 defined by a velocity 
vector v1 is: 

  

P v
x
,v

y
,v

z( )dv
x
dv

y
dv

z
=

m

2!kT

"

#$
%

&'

3
2

e
(

mv2

2kT dv
x
dv

y
dv

z
 

(Remember that there are other states with the same energy but different velocity vectors) 
The Boltzmann Distribution also applies to situations involving gravitational potential energy. 
E.g. consider a column of gas in thermal equilibrium at the Earth’s surface. 
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What is the distribution of molecules as a function of height z? 
Provided z is small compared to the radius of the Earth, we can write the EP of a molecule at 
height z above the earth’s surface as

 
E = mgz . 

Boltzmann Factor is e
!

mgz

kT . 
The probability that one particular molecule is at height z1 therefore 

  
E

1
= mgz

1
 

is
  
P z

1( )dz = Ae
!

mgz

kT dz . 
We can normalise to find A. 

  

Ae
!

mgz

kT dz
!"

"

# = 1

A =
mg

kT

 

 
P z( )z = !

mg

kT
e
!

mgz

kT dz  

This is an exponential distribution. 
We can take this further and investigate how the density of the gas varies with height. 
The number of molecules which lie in a small slab of gas,  dz thick, at height z1 is given by the 
total number of molecules in the column N times the probability that the molecule has height 
z1. 

  
N

z
1

= N
mg

kT
e
!

mgz
1

kT dz  

Density is
 

! =
Nm

V
, so in our slab of gas (volume = Adz ) which is 

  
! z

1( ) =
N

z
m

Adz
=

Nmg

kT
e
"

mgz
1

kT dz
m

Adz
 

Now find
  
! z = 0( ) . 

  

! 0( ) = N
mg

kT
dz

m

Adz
= !

0
 

Hence 
 
!

z
= !

o
e
"

mgz

kT  (Also exponential as expected) 
 

3.3 Scale Height 
We can define the scale height of our model atmosphere to be 

 

z
o
=

kT

mg
, then

 
! z( ) = !

o
e

"
z

z
o . 

z  

Surface 
0 

1
z  

dz  
A  
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If we compare the density at z with the density at 
 
z + z

o( )  then 

  

! z + z
o( )

! z( )
= e

"1 . 

I.e. density drops by a factor e for every rise
 
z

o
in the height. 

Now we calculate pressure (p) as a function of height (z). 
Firstly we note that

 
p z( ) > p z + dz( )because there is an extra layer dz thick pressing down. 

This layer adds an amount of pressure
 
dp . 

The mass of gas in this layer is
 
p z( )V = ! z( )Adz . Hence the force exerted 

is
 
F = mg = ! z( )Adzg . 

Pressure 
 

P =
F

A

!

"#
$

%&
 contributed by this layer is

 
dp = ! z( )gdz . 

Now we can calculate the total pressure at height z from the sum of all contributions to the 
pressure from heights > z . 

 

p z( ) = dp
z

!

" = # z( )gdz
z

!

" = #
o
g e

$mgz

kT dz
z

!

" = #
o
g

$kT

mg
e
$

mgz

kT
%

&

'
'

(

)

*
*

z

!

= #
o
g

kT

mg
e
$

mgz

kT =
kT

m
# z( )No

w substitute
 

! z( ) =
N

z
m

V
. 

i.e. 
 
p =

kT

m

Nm

V
 

 
pV = NkT - ideal gas equation of state, as expected for an ideal gas in thermal equilibrium. 
 

3.4 A Quantized Example of the Boltzmann Distribution 
The Boltzmann Distribution works just as well for quantized systems (e.g. electron levels in a 
Hydrogen atom). 
Here we consider a very simple quantized system. Each particle can take one of three 
possible energy levels. 

  

E
o
= 0

E
1
=

1

2
eV

E
2
= 1eV

 

We can predict the properties of this system using the Boltzmann Distribution. 
Assume the system is in thermal equilibrium at  T = 6000k  (e.g. sun’s surface). So 

 
P E( ) = Ae

!
E

kT  

Here  kT = 0.5175eV . This distribution is not normalised – we can’t normalise by 

using
  

P E( )dE! = 1, because E does not vary continuously – instead use
  

P E( )! = 1 . 

Level Energy (eV) 
 e

!
E

kt  

 
E

o
 0 1 

  
E

1
 0.5 0.3806 

  
E

2
 1 0.1448 
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Therefore
  

P E( )! = A + 0.3806A + 0.1448A = 1.5254A = 1 ,  A = 0.656 . 

Now we can calculate 
 
P E( )  for each level. 

n 
 
P E( )  

 
EP E( )  

0 0.656 0 
1 0.250 0.125 
2 0.094 0.094 

 
We can calculate

  
E = EP E( )! = 0.219eV . 

Note – most particles do not have enough energy to be in  n = 2  or  n = 1 levels. In general we 
only get significant excitation of an energy level if

 
kT ! E

n
" E

o( ) . 

(In this case 
  
kT ! 0.51! E

1
" E

o
 so the first level is starting to become populated.) 

We can find the total internal energy U of the system from U = NE . If we have 1 mole of this 
stuff at   T = 6000k  then  U = 21kJ . 
The relative population densities can be found as follows: for N molecules  

  

N 0( ) = NP 0( ) !Ne
"

E
0

kT

N 1( ) = NP 1( ) !Ne
"

E
1

kT = Ne
"

E
o
+#E( )
kT

 

where  !E  is
  
E 1( ) ! E 0( ) . 

So 
  

N 0( )
N 1( )

= e

!E

kT  

As we add heat at a constant rate more particles will move into n=1 level so 
  

N 0( )
N 1( )

 will 

decrease. 
 
This type of system can help us to understand some other types of physical phenomena, e.g. 
chemical reactions. Often a reaction only occurs if the reacting molecule is in a certain 
excited state. We can make the reaction go faster by increasing T – this increases the 
number of reacting molecules in the excited state. 
 

4. Maxwell Boltzmann Speed Distribution 
It was originally thought that all particles in a gas at Thermal Equilibrium, at temperature T, had 
the same speed. In 1859 Maxwell analysed the collision processes and derived the speed 
distribution function. In 1877 Boltzmann used statistical mechanics to get the same result (from 
the distribution of energies). 
A molecule in a gas at Thermal Equilibrium has three independent

 
E

k
 components associated 

with the translational motion (in x, y and z directions); 3 degrees of freedom. We can write 
down the probability that a particle has velocity component

 
v

x
; 

  
P V

x( )dv
x
= Ae

!
mv

x

2kT dv
x

 
and similarly 



PC 1352 – Introduction to Thermal Physics - Notes Semester 2 

Page 13 
 

  

P V
y( )dv

y
= Ae

!

mv
y

2kT dv
y

P V
z( )dv

z
= Ae

!
mv

z

2kT dv
z

 

Remember that
  

A =
m

2!kT
. 

We can now write the probability that a molecule has a particular velocity 
vector

  
v = v

x
î + v

y
ĵ + v

z
k̂ ; 

  
P v( )dv

x
dv

y
dv

z
= A3e

!
mv2

2kT dv
x
dv

y
dv

z
 

(
 
dv

x
dv

y
dv

z
is sometimes written  d

3
v ) 

In this section we are only interested in the speed of the molecule, not the direction. If we plot 
every possible vector with magnitude 

 
v = v  then these vectors will map out a sphere of radius 

v. This tells us that the number of different velocity vectors with the same magnitude v is 
proportional to the surface area of the sphere  4!v

2 . Since we actually mean vectors with speed 
in the small range  v ! v + dv  so in this case vectors map out a spherical shell of thickness dv . 
Therefore the number of vectors is proportional to  4!v

2
dv . 

The probability that a particle has speed v is given by the number of ways times the probability 
of one way. 

  
P v( )dv = B4!v

2
A

3
e
"

mv
2

2kT dv . 

We can normalise to find 
  
A

3
B( )  to get 

  

P v( )dv =
m

2!kT

"

#$
%

&'

3
2

4!v
2
e
(

mv
2

2kT dv . 

This function is not symmetric, centred on zero or Gaussian. 
See Handout 2, Page 3 for a spherical polar coordinate derivation of this. 
 
4.1 Most Probable Speed 

To do this, find v at the top of the curve. So we want to calculate 
  

dP

dv
= 0  and check

  

d
2
P

dv
2
< 0 . 

Simplified,
  
P v( ) = Av

2
e
!Bv

2

. 

  

dP

dv
= Av2

!2Bv( )e!Bv2

+ A2ve!Bv2

= 0

v
mp

2
= 1

v
mp

=
1

B
=

2kT

m

 

Example for student to prove that
  

d
2
P

dv
2
< 0 . 

 
4.2 Mean Speed 

  

v = vP v( )dv
0

!

" = Av
3
e
#Bv

2

dv
0

!

"  
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Substitute   x = v
2  

  

v =
A

2
xe

!Bx
dx

0

"

#  

Integrate by parts: 

  

u = x

dw = e
!Bx

dx

A

2

!x

B
e
!Bx"

#
$

%

&
'

0

(

+
A

2B
e
!bx

dx
0

(

) =
A

2B
2
=

8kT

*m

 

Example for student to check this. 
Note that this is different to the most probable speed. 
 

4.3 RMS Speed 

  v
2  

  

v
2
= v

2
P v( )dv

0

!

" = Av
4
e
#Bv

2

dv
0

!

"  

See tutorial sheet for maths. 

  

v
2
=

3kT

m

v
2
= v

rms
=

3kT

m

 

 
In a simple system, particles all have the same mass so we can find the average

 
E

k
 in a gas. 

  

E
K
=

1

2
mv

2
=

3

2
kT  

E.g. For argon at room temperature 293K (atomic weight 40): 

  

v
mp

= 348ms
!1

v = 393ms
!1

v
rms

= 426ms
!1

 

 
http://lorax.chem.upenn.edu/Education/MB/applet.html 

 
4.4 Observation of MB Distribution 

The Maxwell-Boltzmann distribution can be measured directly as follows: 
An oven heats some solid material until it vaporises – to give a Maxwell-Boltzmann 
distribution of speeds. Particles have a known mass, and the gas is at a known temperature. 
The particles escape in a beam through a small hole in the oven. The beam will contain 
particles with a range of speeds. (Note this is actually not Maxwell-Boltzmann – see section 8 
– effusion). The entire apparatus is in a vacuum to avoid the particles in the beam scattering 
off air molecules. 
Beam hits a rotating wheel A. A small burst of particles will get through the slit. This burst still 
contains a full range of speeds. The burst travels distance L and hits wheel B, which also has 
a slit offset by angle θ from A. Most particles hit B but a few get through the slit. This happens 

when 
 

t
AB

=
L

V
=

!

"
 i.e.

 

V =
L!

"
. So by varying ω we can measure the number of particles in 

the beam with speed v, and plot
 
N

V
 vs. V. 

See page 2, Handout 2 for a picture of this setup. 
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5. Thermal Radiation and the Planck Distribution 
Any body or system contains moving particles, therefore there are accelerating charges. We 
know that an accelerating charge emits EM radiation, so any system of particles with  T > 0k  will 
emit EM radiation. The spectrum of this radiation depends on the temperature of the system 
and the nature of the surface. 
 
Terminology: 

 
I !( ) - Spectral emittance or spectral energy density. It has units of Power/Unit area/Unit 

wavelength. 
  

Wm
!2( )  

  

I = I !( )d!
0

"

# - Intensity. It has units of power / unit area. 
  

Wm
!2( )  

 
A black body is a perfect emitter and absorber of radiation.. Any other body will emit / absorb 
less efficiently. To make one, get a cavity at temperature T and make a small hole through 
which radiation can escape without affecting the thermal equilibrium. At room temperature the 
hole would look black because the peak intensity (spectral emittance) emitted is

  
~ ! = 10µm . 

 
 
5. 1 Stefan’s Law 

In 1879, Stefan found that the total power emitted per unit area by a black body (intensity) is 

  I = !T
4  where   ! = 5.67x10

"8
Wk

"4
m

"2  - Stefan’s constant. 
 
We can assume that the sun is approximately a black body with a surface temperature of 
about  5800K . The intensity at the sun’s surface is 

  I = !T
4
= 64.2MWm

"2 . 
The total power emitted by the sun is  

   
P
!
= I4!R

!

2
= I times the surface area  = 3.9x10

26
W . 

At a distance of   1AU = 1.5x10
11

m  the intensity of the sun’s radiation is 

   

P
!

4!r
2
=

I4!R
!

2

4!r
2

=
IR
!

2

r
2

= 1.4kWm
"2 . 

 
5.2 Wien’s Law 

Wien’s Law (1893): as T increases, 
 
!

m
decreases (

 
!

m
is the wavelength at the peak of the 

intensity distribution) such that 
  
!

m
T = 2.9x10

"3
K.m  

 
If the temperature of the sun is about  5800K , we can find out

  
!

max
= 500nm , 

 
5.3 Rayleigh – Jeans Approximation 

1899 – The shape of 
 
I !( )  as a function of wavelength was deduced experimentally but could 

not be explained theoretically. 
 
In 1900, Rayleigh modelled black body radiation using standing waves. The method he used 
is as follows: 
 
Step 1; find the number of waves in the black-body cavity per unit wavelength. 

In a cavity of length a, waves with 
  

! =
2a

m
 are allowed (see Page 5, handout 2). In a 3D 

cavity, 
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n =
8!V

"
#

$%
&

'(
d" . 

n is the number of waves with a wavelength between λ and ! + d! . 
The number of these waves which escape the black body cavity is given by the Effusion 
formula (Section 8). 
The rate is 

  

1

4
n

d
cdA  

 
n

d
- Number density of waves 

 c - Speed of Light 
 dA - Area of the hole through which they escape. 
The number that escape per unit time per unit area is 

  

1

4
n

d
c =

1

4

8!

"4

#

$%
&

'(
cd"  

Step 2; Find the energy associated with each wave 
Rayleigh assumed that the Theory of Equipartition (Section 6) holds for waves. This leads 
to the result that the energy in one wave = kT . 

 
Step 3; 

Putting the results from the first two steps together gives; 

  

I
RJ

!( ) =
2"ckT

!
4

d!  

 
This works well to high frequencies, but does not work for low ( < 60 microns) wavelength as it 
tends to infinity (the Ultraviolet catastrophe). 

  

I
RJ

= I
RJ

!( )d!
0

"

# $ "  

This means that you can’t get Stefan’s law. Also 
 
I
RJ

!( )  does not have a maximum, so 
Wien’s law cannot be derived from it. 
See pages 5 and 6, Handout 2. 

 
5.4 Planck 

Planck asked himself what the simplest mathematical change to this theory which would 
give the correct function for

 
I !( ) . His answer was to quantize the energy in a wave, i.e.: 

 E = nhf . 
h was a “fudge factor” to get the numbers to come out right. 

  

E =
hc

!
e

hc

!kT "1

#

$

%
%

&

'

(
(

"1

. 

This gives us the Planck Distribution Function. 

  

I !( )d! =
2"hc

2

!5
exp

hc

!kT

#

$%
&

'(
)1

#

$
%

&

'
(

)1

d!  

See Page 4, Handout 2. 
To derive Stefan’s law from this, integrate the Planck function to find I . 
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I =
2!hc

2

"5
e

hc

"kT #1

$

%

&
&

'

(

)
)

#1

0

*

+ d"

z =
hc

"kT

" =
hc

zkT

dz

d"
= #

hc

"2
kT

=
z

"

d" = #
"
z

dz =
#hc

z
2
kT

dz

I = 2!hc
2 kTz

hc

,

-.
/

01

5

e
z #1$

%
'
(

#kc

z
2
kT

,

-.
/

01
dz

z=*

z=0

+ = 2!hc
2 kT

hc

,

-.
/

01

4

z
3

e
z #1$

%
'
(
#1

dz
z=0

z=*

+

 

Use the standard integral 

  

z
3

e
z !1( )dz

0

"

# =
$4

15
 

  

I = 2!hc
2 kT

hc

"

#$
%

&'

4

!4

15

=
2

15
!5 k

4

h
3
c

2

"

#
$

%

&
'T

4

= (T
4

( = 5.67x10
)8

Wm
2
K

)4

 

 
To derive Wien’s law, differentiate to find

 
!

max
. 

  

dI

d!
=

2"hc
2

!6
e

hc

!kT #1

$

%
&
&

'

(
)
)

hc

!kT
e

hc

!kT e

hc

!kT #1

$

%
&
&

'

(
)
)
# 5

*

+

,
,

-

.

/
/

 

  

dI

d!
= 0 at

 
! = !

max
. 

Therefore we need the square bracket to equal 0. 

Use the substitution 
 

z =
hc

!
m

kT
 to get  z = 5 ! 5e

!z  after some algebra. 

It is easiest to solve this by trial and error. 
We find 

  

z =
hc

!
m

kT
= 4.965 . 

Therefore 

  

!
max

T =
hc

4.965k
= 2.9x10

"3
mK  

Which is Wien’s Law. 
 
6. Classical Equipartition of Energy 

Degrees of Freedom of a particle are the independent factors which define how this particle is. 
For example, in a monatomic ideal gas a particle can be defined by its position

  
x,y,z( )  and its 
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velocity.
  
v

x
,v

y
,v

z( ) . This means there are 6 separate independent values to describe the 

particle – in other words, 6 degrees of freedom. 
Only quadratic degrees of freedom can contribute to energy, therefore 

  
E

k
=

1

2
mv2

=
1

2
mv

x
2
+

1

2
mv

y
2
+

1

2
mv

z
2 . 

Each of these contributes
  

1

2
kT  to the particle. 

 
E

P
= mgz is not a quadratic term, so does not contribute to Equipartition. For a monatomic ideal 

gas, e.g. He, we have 3 degrees of freedom which contribute quadratic energy terms. Each one 

contributes 
  

1

2
kT  to the mean thermal energy of a He atom.  

  

E
k
= 3

1

2
kT =

3

2
kT (per atom) 

Note: this is the same result which we derived in Section 4. 

The total internal energy of a gas of He atoms is just
  

NE
k
=

3

2
NkT . Note U depends only on T 

for an ideal gas. 
We can use Equipartition to predict heat capacities. From Gases, Liquids and Solids: 

 
C =

dQ

dT
. 

At constant volume; 

 

C
v
=
!Q

!T
V

=
dU

dT
 

For one mole of an ideal gas: 

  

U =
3

2
N

A
kT =

3

2
RT  

So 
  

C
V
=

3

2
R  (for one mole) 

If we measure the molar heat capacities for monatomic gases this seems to work. 
What about diatomic gases, e.g. H2. 

 
Model this as a rigid dumbbell. 
Again we expect 3 degrees of freedom from translational

 
E

k
. 

We also now have rotational degrees of freedom. 

  
E

k,rotation
=

1

2
I!

2 . 

The molecule can rotate independently about x, y and z axis, therefore 

  
E

k,rot
=

1

2
I
x
!

x
2
+

1

2
I
y
!

y
2
+

1

2
I
z
!

z
2  

For an ideal gas we have point masses, so
  
I
x
= 0 . Therefore for an ideal gas 

  
E

k,rot
=

1

2
I
y

!
y

2
+!

z
2( )  

m  m  

r  

z  

x  

y  
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Note: 
 
I
y
= I

z
by symmetry. 

Therefore 
  

2
1

2
kT is contributed to the mean energy of the particle. 

So for one molecule of a diatomic ideal gas (e.g. H2): 

  

E
k
=

5

2
kT

U =
5

2
NkT =

5

2
RT

 

for one mole. 

Therefore the molar heat capacity
  

C
v
=

5

2
R . 

 
For polyatomic molecules, we expect to get rotational contributions to Equipartition from 

rotation about all three axes. Therefore we expect
  
C

v
= 3R

  

U =
6

2
kT

!

"#
$

%&
. 

Some species do give 
  
C

v
= 3R  but again there are exceptions. See Handout 3, Page 2. 

There is another problem for classical Equipartition – measured values of 
 
C

v
 for hydrogen vary 

with temperature (Handout 3, Page 3). Part of the solution to these discrepancies is vibrational 
energy. For example, a diatomic model can be viewed as two masses joined by a spring. 

Vibration will give 
  

1

2
mv

2  and 
  

1

2
kx

2  i.e. 2 degrees of freedom, therefore 
  

2x
1

2
kT  available for 

Equipartition (we used this in RJ derivation). 
Therefore if we include vibrational degrees of freedom we get: 

   

U = 3x
1

2
kT

translational

!"# $#
+ 2x

1

2
kT

rotational

!"# $#
+ 2x

1

2
kT

vibrational

!"# $#
. 

For a system of N molecules, 
  

U =
7

2
kT and

  

C
v
=

7

2
R . 

Polyatomic molecules also give additional contributions from other vibrational modes. 
 
To summarise; Classical Equipartition seems OK for monatomic (ideal) gases, but there are 
problems for diatomic or polyatomic gases and we need to find an explanation for variation of 

 
C

V
 with T. 

 
7. Equipartition and Quantum Physics 

Either Equipartition is wrong, or classical physics is wrong. We go back to the Boltzmann 
Distribution – the probability that a particle has energy E (i.e. E ! E + dE ) is; 

 
P E( )dE = Ae

!
E

kT dE . 
We can normalise to find A: 

  

A e
!

E

kT E
!"

"

# = 1

A =
1

e
!

E

kT dE
0

"

#
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This is fine for translational terms since 
  
E

k,translational
=

1

2
mv

x
2
+

1

2
mv

y
2
+

1

2
mv

z
2  and 

 
v

x
 can 

vary from !"  to !  etc. However, Quantum Physics tells us that energies are quantised; they 
can only take discrete values. Therefore strictly speaking we can’t normalise by integrating. 
The principle of Equipartition only works classically when energy varies continuously.  
See page 4, Handout 3. 
 
a) Closely spaced energy levels.  

There are many levels within kT . This means that, on the scale of kT , the energies look 
continuous. Remember that the Boltzmann Factor deals with energy in units of kT . 

b) Widely spaced energy levels. 
Levels look discrete on the scale of kT . 

 
If we increase T slightly, we also increase kT  slightly;; 
a) We excite several new energy states. 
b) The increase is not enough to excite new energy states. 
 
In (a) we find some particles now have the new higher energy levels. 
In (b) none of the particles can reach the next energy level. 
 
Looking now at rotational energy levels; Quantum Mechanics tells us that angular momentum is 
quantised. 

   

E
rot

=
L

2

2m
=

n n +1( )!2

2I
 

n is an integer – quantum number. 

   

! =
h

2!
,  I  is the moment of inertia. 

Level spacing is: 

   

!E = E
n+1

" E
n
=

n +1( )!2

I
 

Consider the rigid dumbbell model of H2. 

 

   

r !10
!10m

m !1.67x10
!27kg

 

  
I
y
= I

z
=

mr 2

2
! 8.35x10

"48kgm2  

  
!E

0"1
= 1.3x10

#21
J = 0.008eV  

At room temperature  kT ~ 0.025eV . 
Therefore  kT > !E  so at room temperature we would expect many molecules to be rotating 
(about the y and z axis). 
What about rotation about x-axis? Moment of inertia for a sphere about its diameter 

is
  

I =
2

5
mr

2 . For H2,
  

I =
4

5
mr

2 . Now  r ~ 10
!15

m  so
  
I
x
= 1.3x10

!57kgm2 . 

m m 

r 

z 

x 

y 
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I
x

I
y

~
10

!57

10
!47

~ 10
10  

So for
  
E

o!1
, we would need 

   

!
2

I
x

=
!

2

10
!10 I

y

~ 8x10
7eV  i.e. 

  
E

rot,x
>> kT at room temperature. 

Therefore we don’t expect to find molecules rotating about the x-axis at room temperature. So 

at room temperature, H2 has 5 degrees of freedom, therefore
  

U =
5

2
kT . 

Degrees of freedom which are inaccessible because kT  is too small are said to be frozen out. 
Quantum Mechanics tells us that the vibrational energy is also quantised, for harmonic 
vibrations:

  !E = !" . At room temperature !E >> kT  for H2. Vibrational modes are frozen out. 
If we increase T by enough then we start to get vibrational modes being excited (but note at 
high enough temperature the molecular bonds will break). 
The common exception is Cl2, which has a very low value of ω, hence 

 
!E

vib
 is also low and Cl2 

molecules do vibrate at room temperature, hence 
  
C

V
= 3R  at room temperature. 

As a rule of thumb for gases: 
 

 

!E

k
 

 

Translations 
  10

!18
k  

 

T >>
!E

k
 

Rotations   1k  

 

T >
!E

k
usually 

Vibrations   1000k  

 

T <
!E

k
usually 

In solids, the mean positions of atoms are fixed, so we don’t have translational or rotational 
degrees of freedom. However the atoms are free to vibrate in 3D, therefore Equipartition tells 
us that we have 6 degrees of freedom (3 kinetic, 3 potential – one of each due to each direction 
the molecule can vibrate). Therefore for one mole of a pure element it should have thermal 
(internal) energy

  
3N

A
kT = 3RT  and

  
C

V
= 3R . This is known as the Law of Dulong and Petit. 

Experimentally, this holds well at room temperature. 
At low temperatures,  kT becomes small compared to 

 
!E

vib
 and the Law of Dulong and Petit 

fails. At high temperatures kT  becomes large enough to break interatomic bonds and the solid 
will melt. 

 
8. Kinetic Theory of Gases 

8.1 Basic Assumptions: 
1. Gases contain very large numbers of molecules. 
2. The volume occupied by the molecules is small compared to the volume of the gas. 
3. The molecules are in continual, rapid, random motion – colliding with each other and the 

container walls. 
4. The pressure on the container walls arises from the change in momentum as molecules 

hit the wall and rebound. The impacts are numerous and one individual impact is not 
important compared to the total number of impacts at the same time interval. 

 
Simplifying assumptions for an Ideal Gas: 
5. Volume occupied by the molecules is negligible. 
6. Intermolecular forces are negligible. 

 
This has a useful result: 
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Consider a container of gas, number density
 
n

d
. 

 

1
6

 of the particles are moving with  v  

towards surface A. 

 
In some time t, all particles within a distance  vt  of the wall will strike (cross) the surface. The 
total number of particles which cross area A in time t is: 

  

1

6
n

d
vtA  

Therefore the number of particles which cross unit area
  
A = 1( )  in unit time

  
t = 1( )  is 

 
n

d
v  (8.1). 

 
8.2 Mean Free Path 

This is the average distance a molecule travels before bumping into another molecule !( ) . 

 

Mean speed is
  

v =
8kT

!m
. In 1 second a molecule will travel a distance  v  and collide with all 

the molecules in a cylinder of volume   !d
2
v  

The number of molecules it collides with is 
  
n

d
!d

2
v  in time  t = 1s . Therefore the average 

distance between collisions is 
  

! =
v

n
d
"d

2
v

=
1

n
d
"d

2
 (8.2) 

Note: actually we have assumed that the other molecules are not moving. Therefore it is 
better to use the mean relative speed to get the number of collisions.  v rel = 2v  which 

gives
  

! =
1

2n
d
"d

2

. 

See Handout 3, Page 5. 
 
8.3 Pressure in an ideal gas 

This is due to collisions with the container wall. A simple model e.g. GLS or Young and 
Freedman. 
Assume the number density of gas is

 
n

d
. Say 

 

1
6

 of molecules are travelling in each of 

  
±x,±y,±z  directions with mean speed v . 

From (8.1) 
  

1
6

n
d
v (8.3) molecules will hit unit area on one side of the box in unit time. Each 

molecule has a change in momentum of  2mv . Therefore the total change in momentum per 

unit time per unit area is 
  

2mv
1

6
n

d
v =

1

3
n

d
mv

2

 

I.e. pressure
  

=
1

3
n

d
mv

2 . 

A 

v  

v  
d 
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This happens to give (approximately) the right answer because two wrongs make a right! But 
this method can give completely wrong results for similar problems. 
 
Correct Derivation: 

 
n

d
molecules per unit volume. The probability that a molecule has velocity component 

 
v

x
 in 

the x-direction is
 
P v

x( )dv
x

. From (8.1) 
 
v

x
n

d
P v

x( )dv
x

is the number of molecules with 

velocity component 
 
v

x
 which hit unit area in unit time. 

The change of momentum of one molecule which hits the wall is
  
2mv

x
. Therefore total 

change in momentum due to all molecules with velocity component 
 
v

x
 is 

  
2mv

x
n

d
v

x
P v

x( )dv
x

per unit area per unit time
  
= 2mn

d
v

x

2
P v

x( )dv
x

. We integrate over all 

values of 
 
v

x
 to find the total change of momentum per unit area per unit time. 

  

2mn
d
v

x

2
P v

x( )dv
x

0

!

" (Note integral limits only include +x direction). 

  

2mn
d

v
x

2
P v

x( )dv
x

0

!

"  

Note that this is an even function. Therefore we can write this equal to 

  

2mn
d

1

2
v

x

2
P v

x( )dv
x

!"

"

# = mn
d
v

x

2  

Therefore pressure
  

= mn
d
v

x

2
=

1

3
mn

d
v

2  (8.4) 

since; 

  

v
2
= v

x

2
+ v

y

2
+ v

x

2

v
2
= v

x

2
+ v

y

2
+ v

x

2

v
x

2
= v

y

2
= v

x

2

 

8.4 Effusion 
See Handout 3, page 6. 
Suppose we have a sealed container full of gas in lower pressure environment. If we make a 
large hole in the container, the gas will flow out until the pressures are equalised. However, if 
the hole is small ! "( )  then the gas inside the container ‘doesn’t know’ about the lower 
pressure outside. Molecules will only escape if they happen to head in the direction of the 
hole in their random motion, and they do not collide with any other molecules before they 
escape. This also implies that the pressure inside the container does not change. This 
process is called effusion. At STP,  ! ~ 100nm . At

  
10

!5
Nm

!2
, " = 10,000m . 

We calculate the rate of effusion as follows. Start with the number density 
 
n

d
 and (from the 

previous derivation) the number of molecules with velocity component 
 
v

x
 which hit (cross) 

unit area in unit time is
 
n

d
v

x
P v

x( )dv
x

. To get the total number of molecules which hit unit 

area in unit time we integrate over all values of
 
v

x
. 

  

n
d
v

x
P v

x
dv

x( )
0

!

"  

We have an odd function this time so we cannot use the same trick as in the pressure 

derivation. Instead we remember that 
  
P v

x( )dv
x
= Ae

!Bv
x

2

dv
x

 
  

A =
m

2!kT
, B =

m

2kT

"

#
$

%

&
'  
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This gives
  

An
d

v
x
e
!Bv

x

2

dv
x

0

"

# . Substitute; 

  

u = v
x

2

du = 2v
x
dv

x

 

So 
  

An
d

2
e
!bu

du
0

"

# =
n

d
A

2
!

1

B
e
!Bu$

%
&

'

(
)

0

"

=
n

d
A

2B
=

n
d

2

2kT

*m
=

n
d

4

8kT

*m
=

n
d

4
v  

Compare with (8.3) - 
  

1

6
n

d
v  

If our hole has area A then the number of molecules which escape per unit time is 

  

n
d

4
vA =

!vA

4m
 (8.5) 

Note: rate of effusion depends on 
 

n
d

m

 therefore if we have a mixture of gases the lighter gas 

(smaller m) will effuse more quickly. 

  

dN

dt
=

n
d
vdA

4
!

n
d

m

 

  

n
1

n
2

!

"#
$

%&
after

=
n

1

n
2

!

"#
$

%&
before

m
2

m
1

 

Effusion continues until 
  

p
1

p
2

=
T

1

T
2

 

 
8.5 Examples of Effusion: 

Uranium Enrichment. 
Suppose we have a mixture of 

  
UF

6
 gas such that we have 0.7% 

  

235
UF

6
 and 99.3%

  

238
UF

6
. 

The lighter gas 
  

235
UF

6
 will effuse more quickly so we can boost the proportion of 

  

235
UF

6
 by 

allowing the gas to effuse. In unit time 
  
N

235
 and 

  
N

238
 molecules will have effused through 

the hole. 

  

N
235

N
238

=

n
d,235

n
d,238

!

"
#

$

%
&

effused

=

n
d,235

n
d,238

!

"
#

$

%
&

original

m
238

m
235

 

The ratio 
  

m
238

m
235

 is called the enrichment factor of the effused gas and in this case it is equal 

to  1.004  (fluorine has mass 19) 
 
9. Transport Phenomena 

9.1 Diffusion 
Diffusion occurs if the gas is not in thermal equilibrium such that the number density of 
molecules in the gas varies. We consider a simple example where the number density is a 

function of position along the z-axis, 
  

dn
d

dz
= const. and 

 
n

d
 decreases as z increases. 
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Note this means 
 

dn
d

dz
 is a negative. The flow of molecules is in the +z-direction. It is found 

experimentally that the rate at which molecules cross unit area in unit time (of a plane 
perpendicular to the z-axis) is 

  

J z,t( ) = !D
dn

d
z,t( )

dz
 

where D is the coefficient of diffusion. We can find an expression for D using a simple kinetic 
theory model. Start by assuming at any time 

 

1
6

 of the molecules are moving in each 

direction along each axis, each with speed  v  (Note warning in Pressure derivative). Firstly 
we look at molecules crossing the 

  
z

0
 plane in the +z direction. Using result 8.1, the number 

of molecules crossing unit area of the 
 
z = z

o
 plane in unit time, coming from the 

 
z = z

o
! "  

plane ( ! is the mean free path)
  
=

1

6
n

d
z

o
! ",t( )v   

 

We can write 
  

n
d

z
o
! ",t( ) = n

d
z

o
,t( ) ! "

dn
d

z
o
,t( )

dz
 so we get

  

1

6
vn

d
z

o
,t( ) !

1

6
v"

dn
d

z
o
,t( )

dz
. 

Similarly, for molecules crossing the 
 
z = z

o
 plane from 

 
z = z

o
+ !  moving in the –z direction 

The number per unit area per unit time is 
  

1

6
vn

d
z

o
,t( ) +

1

6
v!

dn
d

z
o
,t( )

dz
 

To get the total flux of molecules in the +z direction we take the contribution from the 

 
z = z

o
! "  plane, and we subtract the contribution from the 

 
z = z

o
+ ! plane (since these are 

going the other way). Therefore the total flux at 
 
z = z

o
 plane is equal 

to
  

!
2

6
v

dn
d

dz
= !

1

3
v"

dn
d

dz
. Note again that this is a positive number since 

 

dn
d

dz
 is negative. 

Hence the diffusion coefficient is
  

D =
1

2
v! . 

 
9.2 Viscosity 

Transfer of momentum. 

o
z

 

d
n  decreasing 

o
z ! "  

o
z + !  

d
n  

z  
o
z  

o
z ! "  
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Imagine that at   z = 0  a flat sheet is moving through a gas with speed u in the x-direction. 
Molecules next to the sheet will pick up an extra speed u. These collide with molecules in the 

next layer and transfer some of this extra x-momentum. We say 
  
u z,t( )  and 

 

du

dz
 is a negative 

constant. 
 

9.3 Conduction 

This time T varies as a function of z such that 
 

dT

dz
 is a negative constant. Temperature 

increases the lower down you go. 

From experiment, the heat current
 
H =

dQ

dt
=

kA!T

L
. 

If we heat one end of a bar, these atoms gain vibrational energy – this extra energy is passed 
from atom to atom in a heat current.  !T is the temperature difference across length L. k is the 
constant – thermal conductivity. 
 

9.4 Convection 
In this case energy is transported by a flow of molecules from hotter to cooler. E.g. central 
heating systems: 
Radiators – heat up air next to it – sets up a convection current – hot air rises – cooler air 
forced down – circular flow is set up. Difficult to model but via experiment we find that: 

1) 
 

dQ

dt
! A - larger surface area radiator is a more efficient heater. 

2) Convection slows down near stationary surfaces because of viscosity. 

3) Heat current 
  

dQ

dt
! "T

5
4  where  !T  is the temperature difference between the surface of 

the heater and the main body of the convecting fluid. 
 

9.5 Radiation 
Heat transported by EM waves e.g. sun feels warm. We have seen that for black bodies 

  

dQ

dt
= A!T

4  (Stefan’s law  I = !T
4 ) 

For non black bodies 
 

dQ

dt
 also depends on the nature of the surface, described by e – 

emissivity.   0 ! e !1(1 for a black body). e tends to be larger for darker surfaces and for dull 

surfaces. In general
  

dQ

dt
= Ae!T

4 . This s the only way to transport heat across a vacuum. 

Summery on page 7, Handout 3. 
 
10. Temperature and the Zeroth Law of Thermodynamics 

See Handout 4 and GLS. 
 
The Zeroth Law: “If two systems are separately in thermal equilibrium with a third system then 
they must be in thermal equilibrium with each other.” 

 
11. Work, Energy and the First Law of Thermodynamics 

See Handout 4, page 4. 
By definition, thermodynamics is the study of the relationship between heat and mechanical 
work. 
Heat is a disordered form of energy with random motions, whereas work is an ordered form of 
energy e.g. pushing a piston. The first law of thermodynamics is a statement that energy is 
conserved. 
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 !U = Q +W  

 !U is the change in U of a system. 
Q is the heat added to the system (

  Q < 0 , heat is removed from the system) 
W is work done on the system (  W < 0 , system does work on the surroundings) 
 
11.1 Work 

In general
 
dW = F !dx . To find the total work done 

 

W = F !dx"  

In thermodynamics we look at change in volume: V is important in defining the state of a 
system. We look at work done when we change the volume of a gas. Consider a volume of 
gas in a cylinder, cross-sectional area A, confined by a (frictionless) piston. If no force is 
applied to the piston, the pressure inside will equal the pressure outside. The gas in the 
cylinder exerts a force 

 
F = pA  on the piston. If we now compress the gas by applying a force 

to the piston to move it through a distance  dx  we do work against this force F. 

 
dW = !Fdx = !pAdx = !pdV where  dV = Adx  is the change in volume of the gas. Note 

  dW > 0  since  dV  is negative since the volume has decreased.  dW is incremental. To get 

total work we integrate.
  

W = !pdV
V

1

V
2

" . Usually p is a function of V. e.g. if we compress 

isothermally then
  
pV = nRT = const.

 

P =
nRT

V
. Therefore 

  

W = !
nRT

V
dV

V
1

V
2

"  

State of a system – we define the state of a simple thermodynamic system by two variables 
(p, V or T). We can always calculate the other parameters of the system (provided we are in 
thermal equilibrium) using the equation of state – e.g.

 
pV = nRT . 

Simple system has 2 degrees of freedom. 
If we change the state of our system, we transfer energy (Q, W) and change some or all of p, 
V and T. We can go from the initial state (1) to the final state (2) in various different ways or 
paths. We can plot the path of a thermodynamic process on a 

 
pV  diagram if at every point 

on the path the system is in thermal equilibrium (because then we can use 
 
pV = nRT  to 

plot
  
p,V( ) . The amount of work done in each path is given by

 
W = !pdV" . The amount of 

work done in each case is different – it depends on the path. We write
 
dW = !pdV  (d-bar). 

E.g. isothermal 
  

W = ! pdV" = !nRT
dV

VV
1

V
2

"  

Isobaric: 
 
W ! p"V (Pressure constant) 

Isochoric:   W = 0 (Volume constant) 
 
11.2 Heat 

Similarly we can add heat to a system in different ways. In general, 
 dQ = cdT (c is the heat 

capacity) (or 
 dQ = CndT  - C is molar heat capacity). 

e.g. (a): 
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OR same change in state but by free expansion 
(b) 

 
No heat has escaped and no work has been done (if it is an ideal gas). Experiments show 
that T is constant for an ideal gas undergoing free expansion. Therefore the final state is the 
same as for (a) but the amount of heat added is different. 
We define the two principle heat capacities: 

 
c

v
- constant volume 

 
c

p
- constant pressure 

 
c

p
> c

v
for gases because to keep p constant we need to do work against the surroundings. 

 
11.3 Internal energy 

We know that U is the sum of all the energies from random motions of molecules in the 
system. If we change the state of a system then we change U by

 
!U =U

f
"U

i
. In 

general
 !U = Q +W . But we have seen that Q and W depend on path. Is it true that  !U  is 

independent of path? Joule experimented on a thermally isolated system by adding energy in 
different ways. He found that for a given amount of energy added to the system, the change 
in state was always the same, i.e. !U  is independent of path. It is a function of state. 
For an ideal gas Joule found that U only depends on temperature. From free expansion 
experiments

  Q = 0 ,  W = 0  therefore   !U = 0  and T is constant, therefore any two states at the 
same temperature have the same U (Joule’s Law). 
From the differential form of the first law

 dU = dQ + dW . 
If we change the state at constant volume 

 
dU = c

v
dT  

If we go from the same initial to final state some other way,  dU is still
 
c

v
dT  since it is path 

independent. 
 
dU = c

v
dT is always true for an ideal gas. 

To find the total change in U: 

  

!U = c
v
dT

T
1

T
2

"  

If 
 
c

v
 is constant, then

 
!U = c

v
!T . 

V1 

T1 

V2 

T1 

Heat 
gas v. 
slowly 

Isothermal 
so T is 
constant 

V1, T1 

Vacuum 
Container 
is 
thermally 
insulated 
adiabatic

0dQ =  

Break 
partition 

V2, T1 
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Reminder: we used 
  

c
v
=

dU

dT
=

a

2
nR  where a is the number of degrees of freedom. 

(Equipartition 
  

1

2
kT  of energy per degree of freedom). 

  

U =
3

2
nRT for a monatomic gas 

  

dU

dt
=

3

2
nR = c

v
for a monatomic gas. 

Also note since c can be a function of T, always use 
 dQ = cdT  and integrate:

 
Q = cdT! . 

We can derive a relation between 
 
c

v
 and 

 
c

p
 using Joule’s Law: 

Suppose we change state from (1) to state (2) and we do this at constant pressure. From the 
first law,

 dU = dQ + dW . At constant pressure,
 
dU = c

p
dT ! pdV . We know that

 
dU = c

v
dT . 

Therefore
 
c

v
dT = c

p
dT ! pdV . Now use 

 
pV = nRT  so 

 

V =
nRT

p
 and differentiating with 

respect to T gives
 

dV =
nR

p
dT . 

Substituting gives 

 

c
v
dT = c

p
dT ! nRdT

c
v
= c

p
! nR

c
p
! c

v
= nR

 

Note that 
 
c

p
> c

v
 as expected. 

Also, 
  

c
p

c
v

= ! =
5

3
for a monatomic gas. 

  

c
v
=

3

2
nR

c
p
=

5

2
nR

!" =
5

3

#

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

 

For a diatomic gas, 
 

! =
7

5
, etc. 

 
 
11.4 Adiabatic Processes 

No heat exchange.
  dQ = 0 . 

If we compress a gas adiabatically p, V and T all change. We want to find an equation 

relating p and V (same as 
 

P =
nRT

V
 for isotherm). 

From 1st law: 

  

dU = dQ + dW = 0 ! pdV = c
v
dT

c
v
dT = !pdV

 

We want to eliminate T. 
We differentiate

 
pV = nRT .  
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p
dV

dT
+ v

dP

dT
= nR

dT =
pdV + vdP

nR

 

Note: differentiated by parts since p and V are both functions of T. 
Now substitute for  dT  in our equation: 

 

c
v

nR
pdV ! vdP( ) = !pdV

c
v

c
p
! c

v

pdV +Vdp( ) = !pdV

c
v
pdV + c

v
Vdp = !c

p
pdV + c

v
pdV

c
v
Vdp = !c

p
pdV

 

Rearranging to get p’s on one side and all the V’s on the other side: 

  

c
p

c
v

dV

V
=

dp

p
= !

dV

V

!
dV

VV
1

V
2

" = #
dp

pp
1

p
2

"
! ln

V
2

V
1

$

%&
'

()
= ln

p
1

p
2

$

%&
'

()

ln
V

2

V
1

$

%&
'

()

!$

%
&
&

'

(
)
)
= ln

p
1

p
2

$

%&
'

()

V
2

V
1

$

%&
'

()

!

=
P

1

P
2

$

%&
'

()

p
1
V

1

!
= p

2
V

2

!

pV !
= const.

 

This is the equation for an adiabat. 

 

p =
k

V !
 

 
We can find similar equations relating p,T and V,T by using 

 
pV = nRT  and substituting for p 

or V in 
  
pV !

= const.  

P 

V 

( )2 2,p V  

( )1 1,p V  

Adiabat 

Isotherm 

( )2 2,p V  
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TV
! "1( )

= const.

T !p
1"!( )

= const.

 

When we compress a gas adiabatically T increases, therefore p increases more quickly than 
for an isothermal compression. 

Adiabat: 
  

p !
1

V "
 

Isotherm: 
  

P !
1

V
 

 
12. Heat Engines and Refrigerators 

12.1 Reversible Processes 
We have seen that provided a system is in thermal equilibrium, we can plot its state on a P-V 
diagram. If we change its state very slowly, so that it is at all times in thermal equilibrium, 
then we can plot the path from the initial to the final state e.g. going from 

  
T

1
 to 

  
T

2
 if we place 

the system in thermal contact with a series of heat reservoirs each at  dT more than the last 
one. In principle we can reverse the path, i.e. go from the final to the initial temperature. In 
practice, this is impossible, but it is a good model approximation and allows us to model 
thermodynamic systems accurately. 
Reversible (Equilibrium) processes: 
− Heat flow across an infinitesimal gradient dT . 
− Slow adiabatic expansion. 
Irreversible processes: 
− Heat flow across a finite gradient !T . 
− Free expansion of a gas. 
− Conversion of work to heat by friction. 

 
12.2 Heat Engines 

A heat engine is a device which extracts an amount of heat 
 
Q

H
 from a hot reservoir at

 
T

H
. It 

converts some of 
 
Q

H
 into work

 
W

E
, and the rest 

 
Q

C
 is expelled into a cold reservoir at 

 
T

C
 in 

one engine cycle. 
See Page 3, Handout 5 for a diagram of this. 
We can apply the 1st law of thermodynamics over one cycle. The system is the engine itself. 
Over one cycle it goes through a series of thermodynamic processes which return to its initial 
state at the end of the cycle. So

  !U = Q +W = 0 . 
Total Q is

 
Q

H
!Q

C
. 

Total W is
 
!W

E
 (Since work is done on the surroundings) 

 

!"U = Q
H
#Q

C
#W

E

Q
H
#Q

C
=W

E

 

Ideally we would convert all of 
 
Q

H
 into 

 
W

E
 and 

 
Q

C
 would be 0. In practice this is impossible. 

We can define the efficiency of a heat engine: 

  

e =
W

E

Q
H

=
What you get

What you pay

e <1

 

 

e =
W

E

Q
H

=
Q

H
!Q

C

Q
H

 

Example: an aircraft engine does   9000J  of work and discards   6400J  of heat each cycle. 
How much heat is supplied to the engine in each cycle? 
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Q

H
=W

E
+Q

C
= 15400J . 

What is the efficiency of this engine? 

  

e =
W

E

Q
H

= 0.58 (This is actually pretty good!) 

 
12.3 Refrigerator 

A refrigerator is just a heat engine in reverse. It takes heat 
 
Q

C
 from the cold reservoir 

 
T

C( )  

and expels heat 
 
Q

H
 to a hot reservoir

 
T

H( ) . The engine requires work 
 
W

E
 to do this. Again 

over one cycle   !U = 0  and from the 1st Law: 

  

!U = Q +W

= Q
C
"Q

H
+W

E
= 0

W
E
= Q

H
"Q

C

 

This is the same as for the heat engine. 
The equivalent of efficiency is the coefficient of performance: 

 

k =
Q

C

W
E

=
What you get

What you pay

k =
Q

C

Q
H
!Q

C

 

 
12.4 Carnot Cycle 

What is the most efficient heat engine possible? We know that   e = 1 is impossible (i.e. all 
heat changed to work). For maximum efficiency we need to avoid irreversible processes. 
Therefore we want to avoid heat flow across a finite temperature gradient, In the Carnot 
cycle, heat flow only occurs during isothermal processes, which are not across a heat 
gradient. This means that when the engine takes 

 
Q

H
 from the hot reservoir, the working 

substance of the engine (system) is also at
 
T

H
. Similarly when 

 
Q

C
 is expelled to the cold 

reservoir the working substance is at
 
T

C
. All other processes must avoid heat flow, therefore 

they must be adiabatic, to take the working substance from 
 
T

H
 to 

 
T

C
 and back again. Finally 

we should also ensure that all these processes are entirely reversible; they must be done 
slowly enough that the working substance is always in thermal equilibrium. 
Engine: 

 

T
H

Q
C

!

isothermal

T
H

!

Adiabatic

T
C

Q
C

!

Isothermal

T
C

!

Adiabatic

T
H

 

See Handout 5, Page 4. 
If we run the cycle anti-clockwise, it operates as a refrigerator. 
Note

 
dW = !pdV . Therefore: 

 W = the area under the curve. 

 
W

E
= the area enclosed by the cycle. 

 
We can analyse each step of the cycle. 
1-2 Isothermal: 

  
!U = Q +W = nC

v
!T = 0 so

 Q = !W . 

 
p =

nRT

V
 so 

  

W = !pdV
V

1

V
2

" = !
nRT

V
dV = nRT

H
ln

V
1

V
2

#

$%
&

'(V
1

V
2

"  
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This is  < 0  i.e. the system does work on the surroundings – expansion. 

Therefore
  

Q = Q
H
= !nRT

H
ln

V
1

V
2

"

#$
%

&'
= nRT

H
ln

V
2

V
1

"

#$
%

&'
. 

2-3 Adiabat:
  Q = 0 . !U =W . 

Since 
 
pV !

= const  
  

W = ! pdV
V

2

V
3

" = !
k

V #
dV

V
2

V
3

" =
1

1! #
p

3
V

3
! p

2
V

2
$% &'  

Again   W < 0 as expected. 
Alternatively

  
!U = nc

V
!T = nc

v
T

C
"T

H( ) < 0 . 

3-4 Isothermal: 
  
!U = 0,Q = "W  

  

W = nRT
C

ln
V

3

V
4

!

"#
$

%&
> 0  

Work done on the system, gas is compressed. 

  
Q = !W "Q < 0  i.e. heat expelled. 

 
Q

C
 flows out of the system. 

4-1 Adiabatic: 
  
Q = 0, !U = W  

  

W =
1

! "1
p

1
V

1
" p

4
V

4
#$ %&

'U = nc
v

T
H
"T

C( ) > 0

 

Therefore work is done on the system. 
 
Over one complete cycle: 
The system is returned to its original state. Therefore  !U = 0 . 

  

1! 2

"U = 0 +

2 ! 3

nc
v

T
C
!T

H( ) +
3 ! 4

0 +

4 !1

nc
v

T
H
!T

C( ) = 0
 

 
W

E
= total work done by the engine: 

  

1! 2

nRT
H

ln
V

1

V
2

"

#$
%

&'
+

2 ! 3

1

( !1
P

3
V

3
! P

2
V

2
)* +, +

3 ! 4

nRT
C

ln
V

3

V
4

"

#$
%

&'
+

4 !1

1

( !1
P

1
V

1
! P

2
V

2
)* +,

 

The efficiency of the engine is: 

  

e =
W

E

Q
H

=
Q

H
!Q

C

Q
H

=

nRT
H

ln
V

2

V
1

"

#$
%

&'
! nRT

C
ln

V
3

V
4

"

#$
%

&'

nRT
H

ln
V

3

V
1

"

#$
%

&'

=

T
H

ln
V

2

V
1

"

#$
%

&'
!T

C
ln

V
3

V
4

"

#$
%

&'

T
H

ln
V

2

V
1

"

#$
%

&'

 

This can be simplified using the Adiabatic relation   TV
! "1

= const  
Therefore: 
2-3 

  
T

H
V

2

! "1
=T

C
V

3

! "1  

4-1 
  
T

C
V

4

! "1
=T

H
V

1

! "1  

  

V
2

V
1

=
V

3

V
4
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So 

  

e =

T
H

ln
V

2

V
1

!

"#
$

%&
'T

C
ln

V
2

V
1

!

"#
$

%&

T
H

ln
V

2

V
1

!

"#
$

%&

=
T

H
'T

C

T
H

 

Similarly the coefficient of performance for the Carnot refrigerator is: 

 

K = ! =
Q

C

Q
H
"Q

C

=
T

C

T
H
"T

C

 

 
http://www.phy.ntnu.edu.tw/java/carnot/carnot.html 
http//www.rawbw.com/~xmwang/myGUI/CarnotG.html 
http//www.rawbw.com/~xmwang/myGUI/OttoG.html 
http//www.rawbw.com/~xmwang/myGUI/DieselG.html 
 

12.5 Example of Carnot Cycle 
Carnot engine with working substance 1 mole of ideal gas, operating between 

  
T

H
= 400K  

and
  
T

C
= 300K . Initial pressure of   10atm  and the volume doubles during isothermal 

expansion. 
a) Find the pressure and volume at each corner of the cycle. 

1:
  
T =T

H
= 400K , 

  
p

1
= 10atm = 10

6Pa  

  

V
1
=

nRT
H

P
1

= 3.326x10
!3

m
3  

2:
  
T =T

H
= 400k , 

  
V

2
= 2V

1
= 6.65x10

!3
m

3  

  

P
2
=

nRT
H

V
2

=
nRT

H

2V
1

=
P

1

2
= 5x10

5
Pa  

3: 
  
T =T

C
= 300k  

2-3 is an adiabatic process therefore  TV
! "1

= const . For an ideal monatomic gas
 

! =
5

3
. 

  

V
3
=V

2

T
H

T
C

!

"
#

$

%
&

1

' (1

= 1.024x10
(2

m
3  

  

p
3
=

nRT
C

V
3

= 2.436x10
5Pa  

4: 
  
T =T

C
= 300k  

4-1 is adiabatic so  TV
! "1

= const . 

  

V
4
=V

1

T
H

T
C

!

"
#

$

%
&

1

' (1

=
V

3

2
= 5.12x10

(3
m

3 . 

  

P
4
=

nRT

V
4

= 2P
3
= 4.871x10

5
Pa . 

b) Find Q, W and  !U  for each leg of the cycle: 
1-2 Isothermal 

  !U = 0 = Q +W  
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W = !pdV
V

1

V
2

" = !
nRT

H

VV
1

V
2

" dV = nRT
H

ln
V

1

V
2

#

$%
&

'(
= !2305J  

  Q = !W = 2305J  

  
Q

H
= 2305J  (Added to engine) 

2-3 Adiabat 
  Q = 0 .  !U =W  

  
!U = c

v
!T = "1247J  

(Remember 
 
c

p
! c

v
= nR  and

  

c
p

c
v

= ! =
5

3
) 

  
c

v
= 12.47  

  W = !1247J  (work done by system) 

(Or use
  

pV !
= k,W =

"k

V !
dV

2

3

# ) 

3-4 Isothermal 
Use the same method as 1-2 

  !U = 0 . 
  

W = !pdV
V

3

V
4

" = 1729J  

Work is done on the system. 
  Q = !W = !1729J  therefore heat is removed from the system. 

  
Q

C
= 1729J  

4-1 Adiabat 
Same as 2-3. 
  Q = 0 ,   !U =W = 1247J  

c) Find the total 
 
W

E
 and  !U  over one cycle. 

 !U  over one complete cycle  = 0  

 
W

E
= output from engine = !W  

  

W =W
12

+W
23

+W
34

+W
41

= !2305 !1247 +1729 +1247

= !576J

W
E
= 576J

 

Efficiency 
  

e =
W

E

Q
H

=
Q

H
!Q

C

Q
H

= 0.25  

Because this is a Carnot engine we could also use: 

  

e =
T

H
!T

C

T
H

= 0.25 . 

 
13. The Second Law of Thermodynamics 

This law can be stated in various ways. They all boil down to the idea that thermodynamic 
processes have a natural direction. 
 
The Engine Statement 

It is impossible for any system to undergo a process in which it absorbs heat from a reservoir 
at a single temperature and converts it completely into mechanical work with the system 
ending in exactly the same state in which it began. 
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The Refrigerator Statement 
It is impossible for any process to have as its sole result the transfer of heat from a cooler to 
a hotter body. 
To show that these two statements are equivalent, suppose we have a heat engine and we 
run it in conjunction with a workless refrigerator (i.e. violates the refrigerator statement). The 
heat engine converts 

 
Q

h
 into

 
W

E
+Q

C
. The workless refrigerator returns 

 
Q

C
 from the cold 

reservoir to the hot reservoir. The net effect is to remove heat 
 
Q

H
!Q

C
 from the hot reservoir 

and convert it completely into work
 
W

E
. Therefore we have violated the engine statement. 

Any device which violates one form of the second law can be used to make a device which 
violates the other form, or, if violations of one form of the second law are impossible then so 
are violations of the other form. 
 
According to the Second Law, no engine can have 100% efficiency and we know that the 
Carnot Cycle gives the maximum possible efficiency. 
 
“No engine can be more efficient than a Carnot engine operating between the same two 
temperatures.” 
 
Suppose that we have a Carnot refrigerator extracting 

 
Q

C
 from a cold reservoir at 

temperature
 
T

C
, and expels 

 
Q

H
 to a hot reservoir at

 
T

H
. To do this requires work 

 
W

E
 on the 

refrigerator. The Carnot fridge works in tandem with a super-efficient heat engine which 
exhausts 

 
Q

C
 to the cold reservoir. This engine is more efficient than the Carnot engine which 

would operate between the same two temperatures, i.e. it violates the Carnot statement of 
the Second Law. This engine takes in and converts 

 
Q

H
+ ! "Q

C
 into work. An amount 

 
W

E
 of 

this work is used to drive the Carnot refrigerator, which leaves an amount !  of work still 
available. Therefore the net effect is to remove !  from the hot reservoir and convert it totally 
into work. We know from the engine statement of the second law that this is impossible. 
 
Example: 

An inventor claims to have designed a heat engine which takes in   11x10
7
J  at   400K  and 

exhausts   5x10
7
J  at  200K , delivering   16.67kWhrs  of work. 

  
W

E
= 16.67kWhrs x1000x3600( ) = 6x10

7
J . 

From the First Law, 
  !U = 0 = Q +W  

 Q = !W
  
W = !6x10

7
J( )  

  11x10
7
! 5x10

7
= 6x10

7  
This satisfies the first law. 

Second law: 
  

e =
W

E

Q
H

=
6

11
= 0.545  

Carnot engine 
  

e = 1!
T

C

T
H

= 1!
200

400
= 0.5  

This engine therefore violates the second law. 
 
15. Entropy 

15.1 Introduction 
So far we have stated the second law in various forms of words – each basically a statement 
of impossibility. We introduce the concept of entropy to lead us to a mathematical version of 
the second law. 
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When we add heat to a system we effectively increase the amount of disorder in the system: 
each particle has more energy available to it therefore there are more states available to it. 
Entropy is a way of quantifying this increase in disorder (connects micro and macro). 
Consider an infinitesimal isothermal expansion of an ideal gas i.e. we add heat 

 dQ  to the gas 
at constant temperature so the gas expands isothermally, therefore   dU = 0  ( dU depends 
on dT ). If we add 

 dQ  we must get work out:
  dU = 0 = dQ + dW . 

Work done by the system
 
= !dW = +pdV =

nRT

V
dV = dQ . Rearrange to get: 

  

dV

V
=

1

nR

dQ

T
 

 

dV

V
is the fractional increase in volume. 

The gas is more disordered since the volume has increased – it has a larger volume to move 

around in. We note that 
 

dV

V
!

dQ

T
 

Definition of entropy: 
For an infinitesimal reversible process: 

 
dS =

dQ

T
. 

 
For a reversible, isothermal process 

 
!S =

!Q

T
 

For any reversible process: 

  
!S =

dQ

T1

2

"  

Note: entropy is a function of state. So  !S  does not depend on path from initial to final state. 
 
e.g. 

  
1kg of water is heated from   0

o
C  to  100

o
C . What is the change in entropy? 

This is not a reversible process but we can use the fact that entropy is a function of state so 
the actual path does not matter. We consider a series of infinitely small temperature 
increases, each of which is reversible. 

For each step 
 
ds =

dQ

T
=

mcdT

T
 

(Note the integration is now in terms of T and two constants) 
Therefore: 

  

!S = mc
dT

TT =0

T =100

" = mc
dT

T273

373

" = mc ln
373

273

#
$%

&
'(

 

  
c = 4190Jkg!1k!1  

  !S = 1.31x10
3
Jk

"1  
 
15.2 Entropy and the Second Law 

Reversible processes 
  
!S

total
= 0  

Irreversible processes 
  
!S

total
> 0  

This means that the entropy of the universe is increasing (becoming more random) with time. 
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e.g. 300ml glass of water is taken outside on a warm 
  
20

o
C( )  day and allowed to warm up. 

what is the total change in entropy of the universe? 
This is not a reversible process. Therefore find 

 
!S

water
 by considering a series of infinitesimal 

(reversible) increases in T. 

  
!S

water
=

dQ

T1

2

" = mc ln
293

273
= 89Jk

#1  

We must also include 
 
!S

air
 - we assume 

 
T

air
 is constant. 

Therefore 
 

!S
air

=
!Q

T
air

 

  

!Q = mc!T
water

= 0.3x4190x20 = 25140J

!S
air

=
"25140

T = 293k( )
= "86Jk

"1  

 !Q because heat flows out of air i.e. entropy of air has decreased. 

  
!S

total
= !S

water
+ !S

air
= 3Jk

"1  
 

15.3 Entropy and the Carnot Cycle 
Entropy is a function of state, therefore in one complete cycle  !S = 0 ! 
Since we end up in the same state as we started in. 
Analyse each leg separately: 

 
1-2: Reversible isotherm 

  

!S
12

=
Q

H

T
H

 

2-3 Adiabatic 

  
Q = 0!S

23
= 0  

3-4 Isothermal 

  

!S
34

=
"Q

C

T
C

 

4-1 Adiabatic 

  
!S

41
= 0  

Therefore for one cycle: 

  

!S
total

=
Q

H

T
H

"
Q

C

T
C

= 0  

Therefore 
 

Q
H

T
H

=
Q

C

T
C

 

Put in numbers from example in section 13: 

  

Q
H
= 2305J

Q
C
= 129J

T
H
= 400k

T
C
= 300k

!S =
Q

H

T
H

"
Q

C

T
C

= 5.76 " 5.76 = 0
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We showed that 
 

e =
Q

H
!Q

C

Q
H

=
T

H
!T

C

T
H

 

This involved analysing the cycle using the first law and the equation for the adiabat. 

  TV
! "1

= const.  
We can also derive this result much more easily using: 

  

Q
H

T
H

=
Q

C

T
C

Q
C
=

Q
H
T

C

T
H

e =
Q

H
!Q

C

Q
H

=

Q
H
!Q

H

T
C

T
H

Q
H

= 1!
T

C

T
H

 


