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1. Introduction 
Lecturer: George King (Room 3.11, george.king@man.ac.uk) 
 
There are many examples of vibrating systems in everyday life, e.g. musical instruments, the 
clock pendulum, structural vibrations in bridges, earthquakes, vibrating molecules, etc. The 
beauty of this course is that we can often describe these diverse systems by relatively simple 
mathematics that we can solve. 
 
There are also many lecture courses that you will take that depend on a thorough 
understanding of the physics of oscillating systems, for example quantum mechanics and also 
electromagnetism. 
 
The aim of this course is to understand the physics of these systems, and to describe 
mathematically and quantify vibrations and waves. 
 
1.1 Recommended Books 

Vibrations and Waves, A.P. French (Course textbook) 
Physics by Young & Freedman 
Physics of Vibrations and Waves, H. J. Pain * 
The Elements of Physics, Grant & Phillips 
 
* Some tutorials and exam questions are taken from this book. 
 

1.2 The Physical Characteristics of Oscillatory Motion 
− Motion repeats periodically 
− Equilibrium position 
− Always a restoring force 
− Overshoots the equilibrium 
− Has inertia 
− Maximum displacement but zero velocity at turning points 
− Exchange of Potential Energy 

 
E

p( )and Kinetic Energy 
 
E

k
( )  

− Constant amplitude (Ideal system) 
 
2. The Simple Harmonic Oscillator 

2.1 Example of a mass on a horizontal spring 

 
Assume a weightless spring and a frictionless surface. 
NB: in physics we usually start with an idealized system and add the complications in later, 
i.e. friction, gravity and the weight of a real spring. 
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The force produced by the spring acts to push or pull the mass back to its equilibrium 
position. The restoring force, F, is given by F = !kx  (Hooke’s Law), where x is the 
displacement and k the spring constant (i.e. the restoring force per unit displacement). The 
negative sign shows that the restoring force is in the opposite displacement to the 
displacement x. 
 
NB: in many complicated situations e.g. diatomic molecules, Hooke’s law is obeyed for small 
displacements, which is why our present discussion is so durable and far-reaching. 
 
Aside: the correct form for larger distances is F = ! k

1
x + k

2
x
2
+ k

3
x
3
+ ...( ) . However, k2 

and k3 are small compared to k1, hence for small distances F = !kx  is true. 
 

We also have Newton’s law Force = Mass x Acceleration, or
  

a =
d

2
x

dt
2
=

F

M
= !

kx

M
. 

This gives simple harmonic motion which looks like: 

 
A: the amplitude of the oscillation 
T: the period of the oscillation (i.e. time for one complete cycle) 

f: Frequency of the oscillation =
1

t
 (Units of cycles.s-1 or Hertz Hz) 

 
NB: Boundary condition  x = A at   t = 0  
 
SHM occurs when there is a restoring force (i.e. acting towards the equilibrium position) that 
is directly proportional to the displacement from equilibrium. 
 

2.2 Solutions for x(t), v(y) and a(t) 
We want expressions for displacement, velocity and acceleration as functions of time. 
Observing periodic motion of the mass on a spring we look for a function for x(t) that is also 

periodic – a cosine solution. So try x = Acos
2!t
T

"
#$

%
&'

, where A is the amplitude. 

NB: 
2!t
T

"
#$

%
&'

is the angle in radians. 

M 

F 

x negative 
F positive 
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As t goes from 0  T, the angle goes from 0 to 2π. 

Let ! =
2"

T
 where ω is the angular frequency of the oscillator and is in radians/second. 

We obtain x = Acos!t . 
Does this fit our observation? Yes. In particular  x = A  at  t = 0 , i.e. boundary conditions. 
 

   

dx

dt
= !x = v t( ) = !"Asin"t

d
2
x

dt
2
= !!x = a t( ) = !"

2
Acos"t = !"

2
x

 

or  !!x = !"
2
x  

i.e. x(t) is a solution of the DE where ! 2
=
k

M
 

 
Some physics: 

  

T =
2!
"

f =
1

T
=

"
2!

=
1

2!
k

M

#

$%
&

'(

1 2  

The frequency is determined by the properties of the oscillator, k and M, and does not 
depend on the amplitude A of the oscillation. A depends on the boundary conditions. 

f !
1

m
1 2

"heavier things vibrate at low frequency 

f ! k
1 2
"the stronger the spring, the higher the frequency 

 
Examples of frequencies and periods: 

Clock pendulum: 1Hz 
Middle C on a piano: 256Hz 
Crystal in watch / computer: MHz 
Molecular vibration: 1014Hz 
Earthquake: several hours 
Oscillating universe: tens of billions of years 
 

2.3 General solution for SHM 
In general 

  
x t( ) ! 0  at   t = 0  and motion looks like Acos !t "#( ) . Cosine curve has been 

displaced horizontally by angle φ, called the phase angle. 
 
x(t) is described by x = Acos !t "#( )  and doesn’t reach its’ maximum value until!t = " . 
 
This is the general solution to our differential equation !!x = !"

2
x . Solutions to second order 

differential equations always contain two arbitrary constants. 
 
NB: !t " !t + #( )would shift the curve to the left. 
 
Since cos a ! b( ) = cosacosb + sinasinb : 
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Acos !t "#( ) = Acos!t cos# + Asin!t sin#

= acos!t + bsin!t
 

 
where a = Acos!  andb = Asin! . 
 
So the general solution of our differential equation can also be written as 
x = acos!t + bsin!t where a and b are again determined by the boundary conditions. 
 

2.4 Energy considerations in SHM 
Consideration of energy in a system (EK and EP) is a powerful tool in Vibrations and Waves 
for we are dealing with scalar rather than vector quantities. 

For a mass on a spring E
k
=
1

2
mv

2  

E
p
= Work done in extending or compressing the spring = F.d  

In an extension the force exerted by the spring is F = !kx , but the force exerted on the 

spring is +kx . Therefore Ep = kxdx
0

x

! =
1

2
kx

2 . 

Total energy must be a constant, say E. 

E = Ep + Ek =
1

2
mv

2
+
1

2
kx

2  

When mass is at maximum displacement i.e. x=A, Ek=0 since the mass is at rest. Therefore 

Ep = E =
1

2
kA

2 and
1

2
mx

2
+
1

2
kx

2
=
1

2
kA

2 , which is true for any time t. 

Taking  x = Acos!t  and so  v = !A" sin"t  givesU t( ) =
1

2
kx

2
=
1

2
kA

2
cos

2
!t , 

andK t( ) =
1

2
mv

2
=
1

2
m!

2
A
2
sin!t . 

!E =
1

2
kA

2
cos

2
"t +

1

2
kA

2
sin"t . 

The energy flows between EK and EP. We can write total energy as
 

E =
1

2
m!x

2
+
1

2
kx

2 , 

where the mass m stores the EK and the spring constant stores the EP. 

 

21

2
U kx=  

21

2
K mv=  

total
E const=  

t 

Energy 
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NB: in general for a simple harmonic oscillator we have 
 
E = ! !x( )

2

+ " x( )
2

where α and β 
are constants. This is another signature of SHM. 
 

Aside: in thermal physics 
1

2
mv

2  and 
1

2
kx

2  are called ‘degrees of freedom’. In thermal 

equilibrium they each have a mean value equal to 
1

2
k
B
T  where 

 
K

B
 is Boltzman’s Constant. 

k
B
T ~

1

40
eV at room temperature. This gives us “thermal jiggling”. 

 
Just for fun we can also plot 

 
E

p
 and 

 
E

k
 with respect to displacement. 

 
 

2.5 Other examples of SHM 
(a) Mass on a vertical spring – add gravity 

 
When mass is attached to the spring, its’ length is extended by !! . Therefore the force on 
the mass at equilibrium is 

   
F = mg ! k"! = 0  at equilibrium. 

-A A 

2 21 1

2 2
E mv kx= +  

21

2
K
E mv=  

21

2
P
E kx=  

M 

M 
mg 

!!  

Unextended 
spring length 

Spring length 
at equilibrium 

x 
Increasing x 

i) Equilibrium  ii) Displaced from equilibrium 
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When the mass is displaced downwards by distance x then: 

  
F = ma = mg ! k "! + x( ) = mg ! k"! ! kx  

i.e.  m!!x = !kx  

Therefore SHM with ! =
k

m
 as before. 

 
(b) The simple pendulum 

This time let’s find the solution by considering the energy of the system. 

 
We have l2 = l ! y( )

2

+ x
2   l2 = l2 + y2 ! 2ly + x2  and so 2ly = y2 + x2 . 

For small θ, x>>y so that y2 is negligible giving us y =
x
2

2l
. 

The total energy E =
1

2
mv

2
+
1

2
mg

x
2

l

!
"#

$
%&

. 

Note similarity.
 

E =
1

2
m !x( )

2

+
1

2

mg

l
x
2  with 

 

E =
1

2
m !x( )

2

+
1

2
kx

2  - mass on a spring. 

This is our signature of SHM. 

When  x = A  (Amplitude),   v = 0  E =
1

2
mg

A
2

l
. 

Therefore 
 

1

2
mg

A
2

l
=
1

2
m !x( )

2

+
1

2
mg

x
2

l
 true for all times. 

!A
2
=
l

g
v
2
+ x

2  

We need to solve this for x. 

Rearranging A2 =
l

g

dx

dt

!
"#

$
%&
2

+ x
2  

Giving us 
dx

dt
=

g

l
A
2
! x

2( )
1 2

 

Therefore 
dx

A
2 ! x2( )

1 2
=

g

l" dt"  

l-y 

x 

y 

l 
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The first integral is a standard integral, equal to arcsin
x

A

!
"#

$
%&

. 

Therefore arcsin
x

A

!
"#

$
%&
=

g

l
t + ' . 

φ is the constant of integration which we recognize as the phase angle. 

Therefore x = Asin !t + "( )  i.e. SHM with ! =
t

l
 andT =

2!

"
= 2!

l

g
. 

Measuring the period is a good way of determining g. 

Note that for l=1m,T = 2! =
1

9.81
= 2.006s . 

NB: the original definition of a second was one half period of a 1m simple pendulum. 
 

(c) The physical pendulum 
In a physical pendulum the mass is not concentrated at one point, as in the simple 
pendulum, but is distributed. Take a uniform rod of length l pivoting around one end. 

 
Considering forces this time, and the physical pendulum as a rotating system. Then 
Newton’s law  F = m!!x  becomes  ! = I !!"  where I is the moment of inertia and τ is the 
torque. 

I =
1

3
ml

2 for the rod, and ! = "
l

2
mgsin#  

Therefore !! sin
23

1 2 mg
l

ml "=!!  

And using the small angle approximation !! "sin  for small! : 

 

!!! = "
3g

2l

#
$%

&
'(
!  

i.e. SHM with ! =
3g

2l

"
#$

%
&'
1 2

 and T =
2!
"

= 2!
2l

3g

#
$%

&
'(

1 2

 

For l = 1m ,T = 1.64s . 
 
Example: footsteps. Each period corresponds to two steps. 10 periods takes 15 seconds, 
giving T as 1.5 seconds. 
 

(d) The LC Circuit 

l 

mg 

sinmg !  

!  
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The capacitor is initially charged to some voltage V and then the switch is closed. This is an 
ideal system with no resistance in the circuit. 
 
Kirchoff’s law: “the sum of the voltages around any loop is zero”. 

Therefore V
C
+V

L
= 0  with Vc =

q

C
 and V

L
= L

dI

dt
 where I is the current. 

q

C
+ L

dI

dt
= 0  

Since I =
dq

dt
: 

 

q

c
+ Ld!!q = 0

!!q = !
q

LC

 

i.e. SHM with! =
1

LC
. 

q is replacing x in the harmonic oscillator. From energy considerations:- 
1

2
CV

c

2
+
1

2
LI

2
= const. = E  

(Energy stored in capacitor C + energy stored in inductor L) 
i.e. continuous exchange between electrostatic and magnetic energy. 
Let’s note the important similarity between the differential equations 

 

L!!q +
q

c
= 0

m!!x + kx = 0

 

where q ! x,L ! m,
1

C
! k  

Also 
1

2
CV

c
+
1

2
LI

2
= E  becomes 

 

1

2C
q
2
+
1

2
L !q

2
= E  and

 

1

2
kx

2
+
1

2
m!x

2
= E . 

 
NB: Similarities in physics – the equations are the same. If you understand one system 
then you understand lots of others with the same differential equations. You can also make 
analogue computers. 
 

3. The Damped Harmonic Oscillator 
In reality oscillators are not ideal. There are various damping mechanisms present and the total 
energy reduces with time. 

I  

L 
C 
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An example is a tuning fork. The sound intensity (! A
2 ) steadily decreases. Actually damping 

is very light – the fork vibrates for about 5 seconds at a frequency of 440Hz i.e. after several 
thousand complete oscillations. 
Recall our mass on a spring, with no damping. 

 

x = Acos!
o
t  !

o
=

k

m
 

 
 
Observe: 
− decreasing amplitude 
− Constant frequency 
Let’s imagine what x(t) might look like. 
 
Expect x~(Amplitude which varies with time) times cos!t  where ω is about, but not 
necessarily the same, as for undamped case. One clue is that the amplitude reduces by equal 
fractions in equal times i.e. exponentially 

i.e. x t( ) = Ae
!"t( )cos#t and ! ~!

0
 

 
Equation of Motion 

The good news is that in practice the damping is often due to frictional forces that are 
proportional to the velocity of the mass v. Example: Stoke’s Law, 

  
F = 6!"av where !  is the 

viscosity of the medium and a is the radius of the sphere, e.g. motor cars, raindrops. This 
damping force is in the opposite direction to that of velocity. So for our example of a mass on 
a spring, then the force on the mass can be represented by  F = !kx ! bv  where  !bv  is the 
damping force. 
Note units: 

x 

t 

Damped SHO 

x 

t k 

M 
Undamped SHO 
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k: force/unit length (Nm-1) 
b: force/unit velocity (kg.s-1) 

Applying Newton’s law, we obtain
  m
!!x = !kx ! b !x , and making the useful substitutions, 

 

b

m
= ! , 

  

k

m
= !

o

2  where 
 
!

o
 is the angular frequency for the undamped case, we 

obtain
   
!!x + ! !x +"

o

2
x = 0 . 

 
3.1 Solutions for the damped SHO 

We distinguish between light and heavy damping. 
i) Light damping 

We guessed the solution   x = Ae
!"t

cos#t  where β is a constant and ω is approximately 
equal to ωo. 
Then find   !x  and   !!x  and substitute into our DE using the product rule 

  

d

dt
f .g( ) = f

dg

dt
+ g

df

dt
 

where f and g are functions of t. We obtain: 

   

!x = Ae
!"t !# sin#t( ) + cos#t !"Ae

!"t( )
= Ae

!"t !# sin#t ! "cos#t( )
!!x = Ae

!"t !#2
cos#t + "# sin#t( ) + Ae

!"t !"( ) !# sin#t ! "cos#t( )

= Ae
!"t

2"# sin#t + "2 ! #2( )cos#t( )

 

Substitute into DE and collecting terms in  sin!t + cos!t : 

  

Ae
!"t

2"# ! $#( )sin#t + "2 ! #2 ! $" +#
o

2( )cos#t( ) = 0  

This can only be true for all t if sin and cos terms are both equal to 0. 

 

2!" # $" = 0 %! =
$

2
 

and 

  

!2 " #2 " $! +#
o

2
= 0

$ 2

4
" #2 "

$ 2

2
+#

o

2
= 0

#2
= #

o

2 "
$ 2

4

 

 
The frequency of damped oscillation. 

  

x t( ) = Ae
!
"t
2 cos #

o

2 !
" 2

4

$

%
&

'

(
)

1
2

t is a solution of 
   
!!x + ! !x +"

o

2
x = 0  
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Consider successive maxima An and An+1 occurring at times t and (t+T) where T is the 
period. 
Then 

  

A
n
= x t( ) = A

!
"t

2 cos#t

A
n+1

= x t +T( ) = Ae
!
" t+T( )

2 cos# t +T( )

 

  

!
A

n

A
n+1

=
e
"
#t

2

e
"
# t+T( )

2

= e

#T

2  

since
  
cos!t = cos! t +T( ) . 

i.e the amplitude decays by an equal fraction in an equal amount of time. 

  

ln
A

n

A
n+1

=
!T

2
is called the logarithmic decrement and measures the rate of which the 

amplitude dies away. 
 
ii) Heavy damping 

What would you expect for heavy damping? Few oscillations, if at all, and the mass returns 
slowly to rest. Then a cosine function is not appropriate. Let’s try a general solution 

 
f t( )  

i.e.
  
x t( ) = Ae

!
"t

2 f t( ) . 
Substituting x(t) and its’ derivatives into our DE, we obtain: 

  

f ''+ f !
o

2 "
# 2

4

$

%
&

'

(
) = 0 . 

For heavy damping
  

!
2

4
>> "

o

2 . 

Obtain   f '' = !
2
f  where 

  

!2
=

" 2

4
# $

o

2
%

&
'

(

)
*  which is a positive quantity. 

This has a general solution  f = ae
!t
+ be

"!t  giving the displacement  

  
x t( ) = Ae

!
"t

2 ae
!#t

+ be
!#t$

%
&
'  

As expected the mass moves slowly back to its equilibrium position without oscillation. 

2

t

Ae

!
"

 

t t+T 

An 

An+1 

T 
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Critical Damping 

This is a special case where
  

!
2

4
= "

o

2 . We obtain  f '' = 0 . This has a general solution, 

 f = a + bt (NB: two constants for 2nd order ODE) and hence 

  
x t( ) = Ae

!
"t

2 a + bt( )  
and for the special case of critical damping the mass returns to its equilibrium position most 
quickly with no oscillations. 
Note that in many cases damping is a good thing. Critical damping in particular is an 
important consideration in things like electrical meters, car shock absorbers, and beds 
versus trampolines. 
 
 
 

3.2 Rate of energy loss in damped oscillator 
We know that the mechanical energy 

 
E

K
+ E

P
( )  is not conserved: it is dissipated as heat. For 

lightly damped case we have
  
x t( ) = Ae

!
"t

2 cos#t .We can write the amplitude dependence on 

time as 
  
A t( ) = A

o
e
!
"t

2  where 
 
A

o
 is the amplitude at  t = 0 . 

We also have  

  

E =
1

2
mv

2
+

1

2
kx

2
=

1

2
kA

2 . 

Note that the energy is proportional to the amplitude squared, i.e.  

  

E t( ) =
1

2
kA t( )

2

=
1

2
k A

o
e
!
"t
2

#

$
%
%

&

'
(
(
=

1

2
kA

o

2
e
!"t  

giving us that 
 
E t( ) = E

o
e
!"t  where 

 
E

o
 is the energy at time  t = 0 . 

The important result is that energy decays exponentially with time. 
 

3.3 The quality factor of a damped oscillator 
We want to quantify how “good” an oscillator is – a “figure of merit”. 

Light 
damping 

Heavy 
damping 

Critical damping 
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When
  

t =
1

!
,
  

E = E
o
e
!1

=
E

o

e
. So γ is the reciprocal of the time taken for E to reduce by a 

factor of
  

1

e
. Note that ωo and γ have the same dimensions (time-1). γ is a characteristic of the 

exponential decay of the amplitude and ωo is characteristic of the oscillatory part of the 
motion. 

We define a quality factor 
 

Q =
!

o

"
 where Q is a pure number. The larger Q is, the better the 

oscillator is. 
Example: 

The sound intensity, which is proportional to the energy, from a tuning fork with a frequency 
of 440Hz decreases by a factor of 5 in 4 seconds. 

  

5 =
E

o
e

0

E
o
e
!4"

= e
!4"

4" = ln5

" = 0.4s
!1

Q =
#

o

"
=

2$440

0.4
% 7000

 

which is very high. 
 
Another example 

An excited atom emitting radiation. 

Here 
 

! =
1

"
 where τ is the atomic lifetime (how long the particle spends in an excited state), 

around 10-8s, and 
  

!
o
= 2"f =

2c

#
 where λ is 500nmx10-9m  

  

2!3x10
8

500x10
"9

= 4x10
15

rad.s
"1   

  

Q =
!

o

"
= 4x10

7  very high indeed. 

From above; 

  

!
2
=
"

o

2

Q
2

"
2
= "

o

2
#
!

2

4

 

  

! = !
o

1"
1

4Q
2

#

$%
&

'(

1
2

 

When damping is small, Q is large and so
 
! " !

o
. 

E.g. of a modest value of Q of 5 then; 

  

! = !
o

1"
1

4x5
2

#

$%
&

'(

1
2

= !
o

1"
1

100

#

$%
&

'(

1
2

) !
o

1"
1

200

#

$%
&

'(
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i.e. ω is different from ωo by just 0.5%. 

Recall again the variation of energy with time. 

 
E t( ) = E

o
e
!"t  

Let  

  

E
1
= E

o
e
!"t

E
2
= E

o
e
!" t+T( )

 

Therefore 
  

E
2

E
1

=
e
!" t+T( )

e
!"t

= e
!"T

# 1! "T( )  for γT<<1 i.e. for light damping. 

  

!E
2
" E

1
# E

1
$t

E
1
# E

2( )
E

1

" $T "
2%$

&
o

=
2%

Q

 

assuming ω is roughly equal to ωo. 

So the fractional change in energy per cycle
  

=
2!

Q
 and so the fractional change in energy 

per radian
  

=
1

Q
. 

3.4 Electrical example of damped oscillation 

 
Here we have an inductor L, capacitor C and resistance R (damping element). These are all 
connected in series.  We charge the capacitor to voltage V and then close the switch. 

Kirchoff’s law gives
  
L

dI

dt
+ RI +

q

c
= 0 , i.e. 

   
L!!q + R !q +

q

c
= 0 or 

   

!!q +
R

L
!q +

q

cL
= 0  

Compare this to 
   m
!!x + b !x + kx = 0  or 

   
!!x + ! !x +"

o

2
= 0  where

  

!
o

2
=

k

m
. 

Comparing the mechanical and electrical systems; 

  

x ! q

m ! L

k !
1

C

 

as before. But also: 

 

b ! R

" =
R

L

 

L 
C 

R 



PC 1302 – Vibrations and Waves  Semester 2 

15 
 

and so we can say straight away that for the electrical system,
  

!
o

2
=

1

LC
. Recalling that 

  

x t( ) = Ae
!
"t
2 cos #

o

2 !
" 2

4

$

%
&

'

(
)

1
2

t  gives the solution for
  

q t( ) = Ae
!

Rt

2L cos
1

LC
!

R2

4L2

"

#
$

%

&
'

1
2

t . This 

works for
  

R
2

4L
2
<<

1

LC
. 

Since
 
C =

q

V
,
 
V t( ) =

q t( )
C

. 

So voltage across the capacitor with time looks like 
  

V t( ) =V
o
e
!

RT

2L cos
1

LC
!

R
2

4L
2

"

#
$

%

&
'

1
2

t  

 
 
Quality Factor 

 

Q =
!

o

"
becomes 

  

Q =
1

LC

1

R
L

=
1

R

L

C
 . 

Energy in the circuit will decrease as e
!

RT

L . 

NB: for 
  

R
2

2L
2
=

1

LC
 we obtain critical damping and so the oscillations stop. For 

  

R
2

4L
2
>>

1

LC
 we 

get heavy damping. 
So by understanding the mechanical system we can also understand the equivalent electrical 
system, see the Circuits course PC 1382. 

 
4. Use of the complex representation of SHM 

For all the situations we encounter in this course, we could describe x(t), v(t) and a(t) in terms 
of sines and cosines. However there is a more elegant and powerful representation using the 
complex formulations. Moreover in some of your courses its use is essential e.g. Quantum 
Mechanics and Electromagnetism. The complex formulation may sound mysterious but for us it 
will be an important mathematical tool. 
 
4.1 Complex Numbers 

Let’s recall the nature of a complex number z. 

 
z = x + jy where

  
j = !1 . It consists of a real part (x) and an imaginary part (y). 

2

R
t
Le

!

 

( )V t
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We also have Euler’s formula
  
e j!

= cos! + j sin! , or
  
re j!

= r cos! + jr sin! . 
Feynman says “this amazing jewel, the most remarkable formula in mathematics.” 
Clearly 

  

x = r cos!

y = r sin!
. 

We also have a graphical representation of a complex number in the complex plane. 

 
Here we recognize r as the length of the line and !  as the phase, and again

  
r = x

2
+ y

2 . 
If 

  

z
1
= re j!

z
2
= e j"

 

then
  
z

1
z

2
= re

j !+"( ) . 

 
Thus If we multiply a complex number by  e

j!  then we rotate the line by angle φ. 

Example: if 
 

! =
"

2
 we rotate the line through 90o. 

But
  

e j!e
j
"
2 = e j!

cos
"
2
+ j sin

"
2

#

$%
&

'(
= je j! . 

i.e. multiplying a complex number by j is the same as multiplying by   e
j
!

2  i.e. rotation through 
90o. 
If ! = "  we rotate through 180o. But 

  
e j!e j"

= e j!
cos" + j sin"( ) = #1e j!  i.e. multiplying a 

complex number by -1 is the same as multiplying by e j!  i.e. rotation through 180o. 
 

4.2 The use of complex numbers to represent physical quantities  
The idea is that the physical quantity is represented by the real part if complex number z. We 
have: 

We have Compare with 

  x = Acos!t  
   
z = Ae j!t

= Acos!t + jAsin!t  

cosx r= !  

siny r= !  

x 

y 

r 

θ 
φ 

z1 
z3 

cosx r= !  

siny r= !  

x 

y  

r  

θ 
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!x = !A" sin"t  

   
!z = j!Ae j!t

= j!z = "A! sin!t + j!Acos!t  

   
!!x = !A"

2
cos"t  

   
!!z = j2A!2e j!t

= j!( )
2

z = "!
2Acos!t " j!2Asin!t  

So we can represent our physical quantities by complex numbers, remembering that the real 
part of the complex number corresponds to the physical quantity. This is even the case when 
we operate on the complex number to give a new complex number to give a new complex 
number, e.g.

   
!z, !!z . Notice also that we have replaced differentiation by multiplication because 

we are using exponentials – that makes life much easier – especially in complicated 
situations. 

 
4.3 Graphical representation of physical quantities in the complex plane 

Remember the moons of Jupiter. The projection of the moons across the field of view traced 
round Simple Harmonic Motion. In a similar way we represent the displacement x as the 
projection onto the real axis of vector z1 that rotates in the complex plane i.e. 

  
z

1
= Ae j!t where the length of the vector is amplitude A. The projection of the vector 

is  Acos!t = x . 

Then
   
z

2
= !z

1
= j!Ae j!t

= j!z
1
.Note the factor j; we have rotated z1 through

 

!

2
. i.e. 

  
z

2
= A!e

j !t+
"
2

#

$%
&

'( . 

The velocity v is the projection of z2 onto the real axis
  

= A! cos !t +
"
2

#

$%
&

'(
= A! sin!t  as 

required. The length of the line = A! . 
Similarly for acceleration a 

   
z

3
= !z

2
= !"

2Ae j"t
= !"

2z
1
 

Note the factor (-1). This means we have rotated z2 through
 

!

2
, or z1 through π. 

i.e. 
  
z

3
= !

2Ae
j wt+"( ) and the length of the line is  A!

2
ss . 

A is a projection of z3 on the real axis
  
= !

2
Acos !t + "( ) = #A!

2
cos!t  as required. 

Then these three vectors rotate in the complex plane maintaining constant relative phases. 
 
5. Forced Oscillations 

So far we have considered systems that oscillate at their natural frequency. We now want to 
consider the situation where we drive the oscillator at different frequencies i.e. the application of 
a periodic driving force e.g. pushing a swing, a house in an earthquake, the oceans. When we 
apply a periodic driving force, the resulting force acting on the mass = driving force + restoring 
force + damping force. 

   
m!!x = F

o
cos!t " kx " b !x where ω is the driving frequency of the periodic force. 

Therefore
   
m!!x + b !x + kx = F

o
cos!t . This is the general equation of a driven oscillator. 

 
5.1 Physical characteristics of Forced Oscillation 

Take the example of a simple pendulum, driven by moving the point of suspension 
horizontally. We are interested in how the amplitude of the oscillations changes with driving 
frequency, and how the phase difference between the driving force and the displacement 
changes with frequency. 
 
We observe, where ωo s the natural frequency of oscillation: 
1. The frequency of the oscillator is the same as that of the driving force. 
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2. For 
 
! < !

o
the mass closely follows the driving force; there is no phase difference 

between the two 
3. For 

  
! ~ !

o
there is a very large amplitude of oscillation – resonance.  

4. For 
 
! > !

o
 the amplitude decreases but moves in the opposite direction i.e. out of 

phase. 
5. For 

 
! >> !

o
 the displacement tends to 0. The mass can’t follow the driving force 

because of its’ inertia. 

 

The driving displacement is finite and equal to
 

!

2
. 

 
 

5.2 Mass on a spring driven by periodic force (damping neglected) 
The force on the mass is equal to k times the extension,

 
F = k x ! s( )  

therefore
  
m!!x = !k x ! s( ) = !kx + ks . 

If   s = acos!t  then we obtain 
   m
!!x + kx = kacos!t where we recognize   kacos!t  as the driving 

force 
  
F

o
cos!t( )  and

 
F

o
= ka . 

Since
  

k

m
= !

o

2 , we have
   
!!x +!

o

2
x = a!

o

2
cos!t . 

Let’s try the solution   x = Acos!t  where we assume that the system will oscillate at driving 
frequency ! . Strictly speaking

 
A = A !( ) . Therefore; 

   

!x = A! sinít

!!x = "A!
2

cos!t

 

 

Amplitude 

ω o
!  

In phase 

Out of phase 

o
!  !  

0 

!  
Phase 
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!A"
2

cos"t +"
o

2
Acos"t = "

2

2
acos"t

A "
o

2
! "

2( ) = "
o

2
a

A =
a"

o

2

"
o

2
! "

2
=

a

1! "
2

"
o

2

 

We see that the amplitude depends on the driving frequency. 
1. When

 
! << !

o
  A ! a  

2. When
 
! >> !

o
,   A! "0  i.e. it approaches 0 from the negative direction. Now the motion 

is controlled by mass i.e. inertia. i.e. 

  

A !
a

"#
2

#
o

2

= "
ak

m#
2

 

3. When
 
! = !

o
, A = ! . 

A plot of 

  

A =
a

1! "
2

"
o

2

looks like: 

 
Of course, the situation where  A! "  at 

 
! = !

o
 is unrealistic because we have not included 

damping. Thus   x = Acos!t  is a solution of the differential equation but A changes sign as !  
passes through

 
!

o
. This change in sign is saying something about the phase of the 

displacement with respect to the driving force. 
Let’s try 

  
x = Acos !t + "( )  where A is always positive but φ takes on different values. 

Recall the identity 
  
cos !t + "( ) = cos!t cos" # sin!t sin"  

For
 
! = 0 ,

  
cos !t + "( ) = cos!t . 

For ! = " , 
  
cos !t + "( ) = # cos!t  since cos! = "1. 

Therefore
  
x = Acos !t + "( ) , where 

 
! = 0  for 

 
! < !

o
 and ! = "  for

 
! > !

o
 i.e. we have 

reproduced the sign of A using a phase angle. For 
 
! < !

o
 the system oscillates exactly in 

phase with the driving force and for 
 
! > !

o
 the system oscillates exactly out of phase. 

a 

0 

( )A !  

!  0
!  
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Now let’s try complex representation of the system. 
We have  

   
!!x +!

o

2
x = a!

o

2
cos!t (1) 

  
a!

o

2
cos!t is the real part of

  
a!

o
2e j!t . 

Thus the corresponding complex differential equation is 

   
!!z +!

o
2z = !

o
2ae j!t (2) 

where z is the solution of this differential equation and x is
  
Re z( ) . 

 
Note that equation 1 is the real part of equation 2. We can see this as follows. 

    

d2

dt2
Acos!t + kAsin t( )

z

! "### $###
+!

o
2 Acos!t + kAsin t( )

z

! "### $###
= !

o
2 acos!t + jasin!t( )  

Equating the real parts: 

   

d
2

dt
2

Acos!t( ) +!o

2
Acos!t( ) = !

o

2
acos!t( )

!!x = !
o

2
= a!

o

2
cos!t

. 

 
Assuming solution for equation (2) is z = Ae j!t , we have 

  
j!( )

2

Ae j!t
+ A!

o
2e j!t

= !
o

2ae j!t  
NB we have replace differentiation by multiplication. Hence: 

  
!"

2
A + A"

o

2
= "

o

2
a  

and

  

A =
a

1! "2

"
o

2

#

$
%

&

'
(

as before. 

5.3 Forced Oscillation With Damping. Mass on a spring. 
Mass is damped by a viscous fluid. 

!  
o

!  

( )A !  

o
!  !  

0 

!  
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We now have the equation 
  

m
d

2
x

dt
2
+ b

dx

dt
+ kx = F

o
cos!t  

NB: 
 

b
dx

dt
is the damping force,  kx is the restoring force, 

  
F

o
cos!t is the driving force. 

As before, the extension
 
= x ! s( ) . Therefore

 
F = !k x ! s( ) . Therefore 

  

m
d

2
x

dt
2
= !k x ! s( ) ! b

dx

dt
 and   s = acos!t  

Therefore
  

m
d

2
x

dt
2
+ b

dx

dt
+ kx = ks = kacos!t = F

o
cos!t . 

  

d
2
x

dt
2
+ !

dx

dt
+"

o

2
x = "

o

2
acos"t  

where
  
! =

b

m
,"

o

2
=

k

m
. 

Assume
  
x = Acos !t " #( ) .  

  

dx

dt
= !Acos "t ! #( ) and 

  

d
2
x

dt
2
= !A"

2
cos "t ! #( )  

Substitute into equation of motion to obtain: 

  

!A"
2

cos"t cos# + sin"t sin#( ) ! A"$ sin"t cos# ! cos"t sin#( )
+"

o

2
A cos"t cos# + sin"t sin#( ) = "

o

2
acos"t

 

Eqn coefficients of  cos!t : 

  

!A"
2
cos# + A"$ sin# +"

o

2
Acos# = "

o

2
a

% A "
o

2
! "

2( )cos# +"$ sin#( ) = "
o

2
a

 

Eqn coefficients of  sin!t : 

  

!A"
2
sin# ! A"$ cos# +"

o

2
Asin# = 0

% "
o

2
! "

2( )sin# = "$ cos#
 

and: 

  

tan! =
"#

"
o

2 $ "2( )

%sin! =
"#

"
o

2 $ "2( )
2

+"2# 2&
'

(
)

1
2

 

and 

  

cos! =
"

o

2 # "2( )

"
o

2 # "2( )
2

+"2$ 2%
&

'
(

1
2

 

Substitute for 
 
sin!  and 

 
cos!  into the previous equation: 
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A
!

o

2 " !2( ) !
o

2 " !2( )

!
o

2 " !2( )
2

+!
o

2# 2$
%

&
'

1
2

+
!2# 2

!
o

2 " !2( )
2

+!2# 2$
%

&
'

1
2

(

)

*
*
*
*

+

,

-
-
-
-

= !
o

2
a

A

!
o

2 " !2( )
2

+!2# 2$
%

&
'

!
o

2 " !2( )
2

+!2# 2$
%

&
'

1
2

= !
o

2
a

 

  

A =
a!

o

2

!
o

2
" !

2( ) +!
2
#

2( )
1
2

 

When 
 
! = 0  i.e. undamped oscillator then 

  

A =
a

1! "2

"
o

2

#

$
%

&

'
(

 as before. 

For !" 0 , 
  

A!
"

o

2
a

"
o

2
! a  

For!" # ,  A! 0 . 

For
 
! = !

o
, 

  

A =
!

o

2
a

!
o
"

=
!

o

"
a = Qa  which is not infinitely large. 

The maximum amplitude no longer occurs at
 
!

o
. For

 
A !( ) to be a maximum the denominator 

must be a minimum. This means: 

  

d

d!
!

o

2 " !2( )
2

+!2# 2$
%&

'
()
= 0

d

d!
!

o

4
+!4 " 2!2!

o

2
+!2# 2( ) = 0

4!3 " ! 4!
o

2 " 2# 2( ) = 0

! = !
o

1"
# 2

2!
o

2

$

%
&&

'

(
))

1
2

= !
max

 

Therefore Amax occurs at lower frequency than
 
!

o
. 

We can find 
  
A

max
 by substituting 

 
!

max
 into the equation for

 
A !( ) . We obtain (exercise for 

student) 

  

A
max

=

a
!

o

"

1# " 2

4!
o

2

$

%
&

'

(
)

1
2

. 

Consider 
 
tan!  where !  is the phase angle between the driving force and the resultant 

displacement of the mass. 
For !" 0 , 

 
tan!" 0  i.e. φ  0 

For!" # , 
 

tan! =
1

"#
, i.e. small and negative i.e. !" # . 
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For
 
! = !

o
, 

 
tan! = " , i.e.

 

! =
"

2
. 

As ω varies from 0 to ∞, the function 

  

tan! =
"#

"
o

2
$ "

2( )
 varies continuously from 0 to π. (See 

graphs from Forced Oscillations) 
The overall response of the system is similar to the undamped case but: 
1. The amplitude A remains finite. 
2. The maximum value of A shifts to frequency below ωo 
3. φ changes continuously from 0 to π. 
These changes occur because of damping. 
 
Quality Factor 
We recall the quality factor Q from our discussion of damped free oscillations. Q has 

important significance when we now drive the oscillator. Using 
 

Q =
!

o

"
 we obtain 

  

!
max

= !
o

1"
1

2Q
2

#

$%
&

'(

1
2

 

And 

  

A
max

= a
Q

1! 1

4Q
2

"
#$

%
&'

1
2

. 

When
  Q >>1: 

   

!
max
! !

o

A
max
! aQ

 

where Q is like an amplification factor. The important point is that small forces can produce 
large oscillations when applied at the resonance frequency. 
For example, a simple pendulum with 

  Q = 500  and  a = 1mm ,  A = 0.5m . 
The frequency response of forced oscillators for various Q values look like; 

 

( )A !  

!  

10Q =  

3q =  
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See also French 4.9. 
 

5.4 The Complex representation of forced oscillation with damping 
Our general expression was: 

   

!!x + ! !x +"
o

2
x =

F
o

m
cos"t . 

This becomes: 

   
!!z + ! !z +"

o
2z =

F
o

m
e j"t . 

We assume the general solution  z = Ae j!t"#  with
  
x = Re z{ } . Substitute for z in the 

differential equation to obtain: 

  

!"
2A + j#"A +"

o
2A( )e j "t!$( )

=
F

o

m
e j"t

"
o

2
! "

2( )A + j#"A =
F

o

m
e j"$

 

Equate the real parts: 

  

!
o

2
" !

2( )A =
F

o

m
cos#  

Equate the imaginary parts: 

  

!"A =
F

o

m
sin#  

Using
 
sin

2
! + cos

2
! = 1: 

  

A !( ) =
F

o

m

!
o

2 " !2( ) + #!2( )
2$

%&
'
()

1
2

 

And  

  

tan! "( ) =
#"

"
o

2
$ "

2( )
 

 
5.5 Power absorption during forced oscillations 

The power absorbed by the driven oscillator can be deduced from P = Fv . 

   
v = !x = !A" sin "t ! #( )  

1Q =  

10Q =  

Q = !  

o
!  !  

( )! "  
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P = !F
o

cos"tA" sin "t ! #( )
= !F

o
A" cos"t sin"t cos# ! cos"t sin#( )

= ! F
o
A" cos#( )sin"t cos"t + F

o
A" sin#cos

2
"t

 

If we integrate power input over a complete cycle, the first term gives 0, i.e. 

  

sin!t cos!tdt
0

T

" = 0  

However, the average of: 

  

cos
2 !tdt

0

T

" =
1

2
 

(over one cycle). So the average power is given by: 

  
P

average
=

1

2
!AF

o
sin" . 

Using expressions for A and
 
sin! , we obtain: 

  

P
average

!( ) =
!2F

o
2"

2m !
o

2 # !2( )
2

+ "!( )
2$

%&
'
()

 

(i) for !" 0 , 
  
P

average
!( )" 0  

(ii) For!" # , 
  
P

average
!( )" 0  

(iii) 
 
P

average
!( ) passes through a maximum at exactly 

 
! = !

o
 i.e. maximum power absorbed 

at
 
! = !

o
. This leads to the power resonance curve. 

 
NB the power curve is symmetrical about the maximum, except for large !  or low Q values. 

  

P
max

=
!

o

2
F

o

2
"

2m "!
o( )

2
=

F
o

2

2m"
 

An important parameter of the resonance curve is its width at half maximum. This width 
characterizes the sharpness of the response of the oscillator. We can find the point at which 

the power falls to 
  

P
max

2
 in the following way by considering equation 1. 

  

P
average

!( ) =
!2F

o
2"

2m !
o

2 # !2( )
2

+ "!( )
2$

%&
'
()

-- equation 1. 

  

!
o

2
" !

2( ) = !
o
" !( ) !

o
+!( ) # $!2!

o
 

o
!  

!  

max
1
2
P  

max
P  
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where 
 
!" = "

o
# "( )  and 

  
!

o
+!( ) " 2!

o
 where we are assuming that over the narrow region 

of resonance
 
! " !

o
. 

Therefore equation (1) becomes: 

  

P
average

!( ) =
!

o
2F

o
2"

2m 2!
o
#!( )

2

+ " 2!
o

2{ }
= !

o
2

F
o

2"

2m" 2

1

4!
o

2
#!( )

2

" 2
+!

o
2

=
F

o
2

2m"

1

4
#!( )

2

" 2
+1

 

  

P
max

=
F

o

2

2m!
and 

  

P
max

2
 will occur when

 

4 !"( )
2

# 2
= 1. 

So the width of the power resonance curve at half-height is: 

  

!" = "
o
# "( ) = ±

$

2
. 

  

! = !
o
±
"

2
at half height. 

The width
 

=
2!

2
= !  

Width
 

= ! =
"

o

Q
 i.e. to the reciprocal of time needed for free oscillations to decay to 

  

1

e
 of their 

initial energy (see section 3.4). 
This power resonance curve is common in physics, for example optical resonance. Light is 
absorbed or emitted by atoms at well-defined frequencies. 
 
Emission 
Quantum picture: 

 
Classical picture: 

 
The oscillating electron produces electromagnetic radiation. This is analogous with the tuning 

fork. The intensity falls to 
  

1

e
 of the initial value in the lifetime ! .  ! ~ 10

"8
s . This 

gives
  
! = 10

8
s
"1 . 

  
! = 500nm,"

o
= 4x10

15
rads

#1  

2
E  

1
E  

2 1
E E E hf! = " =  

Atom 

Oscillating 
electron 

!  

A  

t  
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Q =
!

o

"
=

4x10
15

10
8

= 4x10
7 . 

 
Absorption 
The atom interacts with the oscillating field of electromagnetic radiation. It absorbs over a 
narrow range of frequencies to give the absorption line. This is essentially the same as the 
power resonance curve (Absorption spectroscopy). 

 

The width of the resonance curve
 

= ! =
1

"
. 

So by measuring the width of the absorption line we can deduce the lifetime of the excited 
state. Usually we measure the absorption spectrum by varying the wavelength of the light. 
We have: 

  

c = f!

! =
c

f
=

2"c

#

d! = $
2"c

#
2

d# = $
!#

#
2

d# = $
!

#
d#

d!

!
= $

d#

#

 

 
We are interested in the width of the peaks, so we have: 
!"

"
=
!#

#
 

Order of magnitude calculation: 

  

! = 500nm

"# = $ = 10
8
s
%1

# = 4x10
15

rads
%1

&"! =
10

8

4x10
15

500nm = 10
%5

nm

 

This is the width of the spectral lines. 
 

5.6 Transient phenomena 
So far we have considered steady state solutions that occur when the system has had time to 
settle down to the driving force. When we first apply the force the system will respond by also 
oscillating at its natural frequency. This transient decays away because it is a damped motion 
just like free oscillations. Mathematically we have: 

Atom 

EM wave 

!  

Absorption spectrum 

!"  

( )P !  

!  
o

!  

!"  

( )I !  

!  o
!  
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!!x + ! !x +"
o

2
x =

F
o

m
cos"t -- (1) 

If 
  
x

1
t( )  is a solution of 

   

!!x
1
+ ! !x

1
+"

o

2
x

1
=

F
o

m
cos"t  

and 
  
x

2
t( )  is a solution of 

   
!!x

2
+ ! !x

2
+"

o

2
x

2
= 0  

Then 
  

d
2

dt
2

x
1
+ x

2
!" #$ + %

d

dt
x

1
+ x

2
!" #$ +&o

2
x

1
+ x

2
!" #$ =

F
o

m
cos&t  

i.e. 
  

x
1
+ x

2
!" #$ is also a solution of equation (1). It is in fact the complete solution. For example, 

in the case of light damping the complete solution is: 

  

x t( ) = Be
!
"t
2 cos #

o

2 !
" 2

4

$

%
&

'

(
)

1
2

+ Acos #t ! *( )  

  

Be
!
"t
2 cos #

o

2 !
" 2

4

$

%
&

'

(
)

1
2

is the damped oscillation solution from section 3.1, and 
  
Acos !t " #( )  

is the forced oscillation solution from section 5.3. 

 
 

5.7 Electrical Resonance Circuits 

Transient Solution Steady State + 

= 
Transient 
Response 
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Voltage generator

  
V

o
cos!t . 

Our LCR circuit now contains an AC voltage source. 
Applying Kirchoff’s law: 

   

L!!q + R !q +
1

c
q =V

o
cos!t

!!q +
R

L
!q +

q

LC
=

V
o

L
cos!t

 

Compare with the general equation for the mechanical system: 

   

!!x +
b

m
!x +

k

m
x =

F
o

m
cos!t  

  

x ! q

m ! L

b ! R

k !
1

C

" =
R

L

 

And driving force  F = driving voltage V. 
All that we learnt for the mechanical oscillator, we can transfer to electrical oscillations. 
For example, we can immediately write down a solution for LCR circuit. Compare: 

  
x t( ) = Acos !t " #( )where the amplitude 

  

A !( ) =
F

o

m

!
o

2 " !2( )
2

+ #!( )
2$

%
&
'

1
2

 and 
 

!
o
=

k

m
 

becomes 
  
q = q

o
cos !t " #( )  with 

  

q
o
=

V
o

L

!
o

2 " !2( )
2

+
R!
L

#
$%

&
'(

2#

$
%
%

&

'
(
(

1
2

 and
  

!
o
=

1

LC
. 

( )
( )

( )

( )
( ) ( )

1 1
2 22 2

2
2

2 2 2 2

2

sin
sin

sin sin

1

o

o
o

o o

o
o

V
t V tdq LI q t I t

dt
R

L R
L

! ! " # ! " #
= = " ! ! " # = " = " = ! ! " #

$ % $ %!$ % $ %!! " ! + " +& ' & '& ' & '& ' & '!( ) ( )( ) ( )  

~ 

C 

R 

L 
 



PC 1302 – Vibrations and Waves  Semester 2 

30 
 

The maximum current will occur when 
 
! = !

o
 i.e. when 

  

! =
1

LC
 the resonance frequency 

and
  

I
o,max

=
V

o

R
. 

e.g.   C = 10
!8 farad,   L = 10

!4 henrys,   R = 20 ohms, 
  
V

o
= 100 volts. 

  

!
o
=

1

LC

= 10
6
rads

"1 and 
  

I
o
max =

100

20
= 5 amps. 

 

Finally 
 

Q =
!

o

"
=
!

o
L

R
=

L
C

R
 

 
6. Coupled Oscillators 

So far we have discussed systems which have only one natural frequency of oscillation, e.g. 
the simple pendulum. Many systems are capable of oscillating at two or more frequencies. 
These systems consist of two or more oscillators coupled together. 
 
6.1 Physical Characteristics of coupled oscillators 

An example is coupled pendulums. 
We observe; 
− The system can oscillate in two well-defined ways, or the normal modes of vibration. 
− Once started in a particular normal mode, the system stays in that mode, i.e. it doesn’t 

change to the other. No exchange of energy between them. The two normal modes are 
independent of each other. Each normal mode has a well-defined frequency. 

− Can have more complicated (general) motions that are suggested to be a combination of 
the two independent modes. 

 
Definition 

A normal mode of vibration is one where all parts of the system vibrate at the same 
frequency, with constant amplitude and with a constant phase relationship. 
 

6.2 Normal modes of two pendulums with spring coupling 
i) First normal mode. Here the distance between the two masses remains constant and equal 

to the unstretched length of the spring. 

( )I !  

o
! = !  

!  
60R = !  

20R = !  
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I.e.

 
x

A
= x

B
. This is an easy solution. It means that the pendulums are essentially uncoupled 

so that 
  
x

A
= Acos!

o
t  and 

  
x

B
= Acos!

o
t  with 

 
!

o
=

g

l
 where for simplicity we emit phase 

angle !  i.e.
 
! = 0 . Also, A is determined by the initial boundary conditions. 

ii) Second normal mode. Now we displace the masses by equal and opposite distances. This 
gives us alternate compression and extension of the spring, i.e.

 
x

A
= !x

B
. 

 
The equation of motion for mass A,  

   
m!!x

A
= !mg" ! 2kx

A
= !

mgx
A

L
! 2kx

A
 where 

 

mgx
A

L
 is the simple pendulum result, and 

  
2kx

A
 

is the extension of
  
2x

A
. Therefore: 

   
!!x

A
+ !

o

2
+ 2!

x

2( ) x
A
= 0  where 

  
!

o

2
=

g

l
 and 

  

!
C

2
=

k

m
 

Let 
  
! ' = !

o

2
+ 2!

c

2( )
1
2  to give the SHO equation

   
!!x

A
+! '

2
x

A
= 0 . 

NB: The spring constant increases the restoring force and therefore increases the 
frequency compared to the first mode. 
Then

  
x

A
= Bcos! ' t  and so 

  
x

B
= !x

A
= !Bcos" ' t  and B is determined by the initial 

boundary conditions. 

b
x  

a
x  

B  A  
T  T  

2
A

T kx=  

b
mgx

L
 a

mgx

L
 

b
x  

a
x  

B  A  
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NB: there is a higher frequency for the second normal mode. 
For each of these normal modes, the two masses move at the same frequency as each 
other, have constant amplitude of oscillation and there is a well-defined phase relationship 
between them. i.e. 0 or π. 
Once started in a particular mode the motion remains in that mode: there is no interaction 
between them. 

 
6.3 General motion of coupled pendulums (the super-position of normal modes) 

Now let’s consider the more general case where mass A is at 
 
x

A
 and mass B is at 

 
x

B
 and 

now
 
x

A
! x

B
. 

 
Spring is stretched by

 
x

A
! x

B
( ) . This produces a tension T in the spring that pulls on the 

masses A and B with a force
 
k x

A
! x

B
( ) . Therefore the restoring force on A is 

 

mgx
A

L
+ k x

A
! x

B( )  and restoring force on B is
 

mgx
B

L
! k x

A
! x

B( ) . (Minus sign because T is in 

the opposite direction to restoring force). 
Therefore the equations of motion: 

   
m!!x

A
+

mg

L
x

A
+ k x

A
! x

B( ) = 0 (1) 

   
m!!x

B
+

mg

L
x

B
! k x

A
! x

B( ) = 0 (2) 

b
x  

a
x  

B  A  T  T  

( )A B
T k x x= !  

B
x

mg
L

 A
x

mg
L

 

t  
A  

A
x  

t  
A  

B
x  
 

First Normal Mode 

o

g

L
! =  

t  
B  

A
x  

t  
B  

B
x  

Second Normal Mode 

( )
1

2 2 2
' 2

o c o
! = ! + ! > !  
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These two differential equations cannot be solved separately but must be solved 
simultaneously. We do this as follows: 
Adding (1) and (2) we obtain: 

  
m

d 2

dt 2
x

A
+ x

B( ) +
mg

L
x

A
+ x

B( ) = 0  

This is Simple Harmonic Motion in a new variable
 

x
A
+ x

B
( ) . 

If we let 
  

x
A
+ x

B( ) = q
1
 then 

   
!!q

1
= !

g

L
q

1
 i.e. simple harmonic motion with frequency

 

g

l
= !

o
. 

As we shall see, this change of variable is not just algebra, it is an important bit of physics. 
Subtracting (2) and (1), we obtain 

  
m

d 2

dt 2
x

A
! x

B( ) +
mg

L
x

A
! x

B( ) + 2k x
A
! x

B( ) = 0  

or 

  

d
2

dt
2

x
A
! x

B( ) + "
o

2
+ 2"

c

2( ) x
A
! x

B( ) = 0  

where again 
  
!

o

2
=

g

l
 and

  

!
c

2
=

k

m
. 

This is simple harmonic motion in another new variable
 

x
A
! x

B
( ) . If we let 

  
q

2
= x

A
! x

B( )  then: 

   
!!q

2
= ! "

o

2
+ 2"

c

2( )q2
. 

i.e. simple harmonic motion with frequency 
  
! ' = !

o

2
+ 2!

c

2( )
1
2  

These two frequencies 
 
!

o
 and  ! '  correspond exactly to those of the normal modes we 

identified before. 
Thus we obtain the possible solutions of 

  
q

1
= D cos!

o
t  and 

  
q

2
= E cos! ' t  where D and E 

depend on the initial boundary conditions. 
We identify these two with the normal modes of vibration we saw earlier. The variables 

  
q

1
 

and 
  
q

2
 are called the normal coordinates while 

 
!

o
 and  ! '  are called the normal 

frequencies. 
 
NB: 

  

x
A
=

1

2
x

A
+ x

B( ) + x
A
+ x

B( )( ) =
1

2
q

1
+ q

2( )

=
1

2
D cos!

o
t + E cos! ' t( )

x
B
=

1

2
x

A
+ x

B( ) " x
A
" x

B( )( ) =
1

2
q

1
" q

2( )

=
1

2
D cos!

o
t " E cos! ' t( )

 

Thus the oscillations of both masses can be described by a linear combination of the two 
normal modes. 
 
Recap: 
From our discussion of the coupled pendulums we have: 
1. Spotted the two normal modes 
2. Deduced their associated frequencies

  
!

o
+! '  in terms of m, L and k. 

3. Deduced the normal coordinates
  
q

1
+ q

2
. 
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4. Found general expressions for 
 
x

A
+ x

B
 in terms of a linear combination of the two normal 

modes. 
 

6.4 Examples of the linear combination of normal modes 
Consider examples of different initial conditions i.e. the boundary conditions at  t = 0 . 
Example 1: 

Boundary conditions:
  
x

A
= A

o
, x

B
= A

o
, at  t = 0 . 

Since 
  

x
A
=

1

2
D cos!

o
t + E cos! ' t( )  then 

  

1

2
D + E( ) = A

o
 since  t = 0 . 

Similarly 
  

x
B
=

1

2
D ! E( ) = A

o
 

Adding, obtain 
  
D = 2A

o
 and so   E = 0  i.e. 

  

x
A
=

1

2
D cos!

o
t = A

o
cos!

o
t and

  

x
B
=

1

2
D cos!

o
t = A

o
cos!

o
t . 

We recognize this as the first normal mode i.e. for   E = 0  all the motion is in a single normal 
mode. 
 

Example 2: 
Boundary conditions 

  
x

A
= A

o
, x

B
= !A

o
 at  t = 0 . 

As before, 
  

x
A
=

1

2
D cos!

o
t + E cos! ' t( ) = A

o
i.e. 

  

1

2
D + E( ) = A

o
since  t = 0 . 

  

x
B
=

1

2
D ! E( ) = !A

o
 

Subtracting: obtain 
  
E = 2A

o
 and so   D = 0  i.e. 

  

x
A
=

1

2
E cos! ' t = A

o
cos! ' t

x
B
= "

1

2
E cos! ' t = "A

o
cos! ' t

 

We recognise this as the second normal mode i.e. for   D = 0 all motion is in a single mode. 
 

Example 3: 
Boundary conditions 

  
x

A
= A

o
, x

B
= 0 (at rest) at  t = 0 . 

Then 
  

x
A
=

1

2
D cos!

o
t + E cos! ' t( ) = A

o
  

  

x
A
=

1

2
D + E( ) = A

o
 

  

x
B
=

1

2
D ! E( ) = 0  

Therefore 
 
D = A

o
 and 

 
E = A

o
 i.e.

 
D = E = A

o
. 

Again, a linear combination of normal modes with equal amounts of each mode. 

  

x
A
=

1

2
A

o
cos!

o
t + cos! ' t( )

x
B
=

1

2
A

o
cos!

o
t " cos! ' t( )

 

Recast these solutions in a different way. Recall the trig identities 

   
cos A ± B( ) = cos AcosB ! sin AsinB  
Giving: 
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cos A + B( ) + cos A ! B( ) = 2cos AcosB

cos A + B( ) ! cos A ! B( ) = !2sin AsinB

 

Let 
  
A + B( ) = ! '  and

 
A ! B( ) = "

o
. 

Therefore by addition
  

2A = ! '+!
o
" A =

! '+!
o( )

2
 

And by subtraction 
  

2B = ! '" !
o
# B =

! '" !
o( )

2
 

Therefore: 

   

cos ! '( )
A+B( )
!

+ cos !
o( )

A"B( )
!

= 2cos
! '+!

o

2

#

$%
&

'(

A

" #$ %$

cos
! '" !

o

2

#

$%
&

'(

B

" #$ %$

) x
A
= A

o
cos

! '+!
o

2
t

#

$%
&

'(

high frequency

" #$$ %$$

cos
! '" !

o

2
t

#

$%
&

'(

low frequency MODULATION

" #$$ %$$

 

Compare with “beating” (aka interference patterns) 
Similarly, 

  

cos! '" cos!
o
= "2sin

! '+!
o

2

#

$%
&

'(
sin

! '" !
o

2

#

$%
&

'(

cos!
o
" cos! ' = 2sin

! '+!
o

2

#

$%
&

'(
sin

! '" !
o

2

#

$%
&

'(

x
B
= A

o
sin

! '+!
o

2
t

#

$%
&

'(
sin

! '" !
o

2
t

#

$%
&

'(

= A
o

cos
! '+!

o

2
t +

)
2

#

$%
&

'(
cos

! '" !
o

2
t +

)
2

#

$%
&

'(

 

i.e. each term is 
 

!

2
 out of phase with respect to the 

 
x

A
 term. 

(French fig. 5.3) 
Note: there is an exchange of energy between the two masses but there is no exchange of 
energy between the two normal modes. We can see this as follows: 

  

x
A
=

1

2
A

o
cos!

o
t + cos! ' t( )

x
B
=

1

2
A

o
cos!

o
t " cos! ' t( )

 

Therefore: 

  

q
1
= x

A
+ x

B
= A

o
cos!

o
t

q
2
= x

A
" x

B
= A

o
cos! ' t

 

Constant amplitude means constant energy. 
 
 
6.5 Oscillating masses coupled by springs 

This is an example of coupled motion that is closely related to vibrational modes of 
molecules. Let’s start with the simpler system of a single mass connected by two springs. 
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T
1
= T

2
= kx

m!!x = !kx ! kx = !2kx

 

This is twice as strong as a single spring. 

  

!
o

2
=

2k

m
 

Now consider two masses connected by springs. 

 
L is the equilibrium length of the springs. 
Assume 

 
x

B
> x

A
 with both 

 
x

A
 and 

 
x

B
 positive. 

  
T

1
= kx

A
, T

2
= k x

B
! x

A( ), T
3
= kx

B
,  

Then
  
m!!x

A
= !kx

A
+ k x

B
! x

A( )  and 
  
m!!x = !k x

B
! x

A( ) ! kx
B

 
Hence: 

   

!!x
A
+

2k

m
x

A
=

k

m
x

B

!!x
B
+

2k

m
x

B
=

k

m
x

A

 

Letting 
  

!
1

2
=

2k

m
 and 

  

!
2

2
=

k

m
 we obtain; 

   

!!x
A
+!

1

2
x

A
= !

2

2
x

B

!!x
B
+!

1

2
x

B
= !

2

2
x

A

 

These are our coupled equations. We could proceed as before, i.e. add and subtract the 
equations to get 

 
x

A
+ x

B( )  and 
 

x
A
! x

B( )  etc. But let’s try a more general approach. Here we 
don’t “spot” the normal modes, but assume that for each normal mode the masses will move 
at the same frequency, and that their motion will be periodic. Also let’s try the complex 
representation. 
Let

  
x

A
= Ae j!t

, x
B
= Be j!t . 

Substitute these into the coupled equations. 

  

!"
2Ae j"t

+"
1

2Ae j"t
= "

2

2Be j"t

!"
2Be j"t

+"
1

2Be j"t
= "

2

2Ae j"t
 

Thus: 

  

A !
1

2
" !

2( ) = B!
2

2

B !
1

2
" !

2( ) = A!
2

2

 

A
x  

L  L  

2
T  

1
T  

k  k  

Stretched  Stretched  Compressed  
B
x  

2
T  

3
T  

x  

L  L  

2
T  

1
T  

k  k  

Extension  Compression  
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Multiplying 

  

AB !
1

2
" !

2( ) !
1

2
" !

2( ) = AB!
2

4  

 
!

4
" 2!

2
!

1

2
+!

1

4
" !

2

4
= 0  

 
!

4
" 2!

2
!

1

2
+ !

1

4
" !

2

4( ) = 0  

This is a quadratic equation in  !
2  

Therefore: 

  

!2
=

2!
1

2
± 4!

1

4 " 4 !
1

4 " !
2

4( )
2

= !
1

2
±!

2

2

! = !
1

2
+!

2

2( )
1
2 =

3k

m

#

$
%

&

'
(

1
2

! = !
1

2 " !
2

2( )
1
2 =

k

m

#

$
%

&

'
(

1
2

 

 
We have obtained the two normal frequencies of the system. 
We also have from above; 

  

A =
B!

2

2

!
1

2
" !

2( )
 

For
 
!

2
= !

1

2
+!

2

2 ,  B = !A , i.e. the masses move in opposite directions, 

For
 
!

2
= !

1

2
" !

2

2 ,  B = A  i.e. the masses move in the same direction. 
NB: this is giving us the phase information. 

  

x
A
= Acos !

1

2
" !

2

2( )
1
2

t

x
B
= Acos !

1

2
" !

2

2( )
1
2

t

or

x
A
= Acos !

1

2
+!

2

2( )
1
2

t

x
B
= "Acos !

1

2
+!

2

2( )
1
2

t

 

Each pair corresponds to a normal mode of vibration. As usual, the general solution will be a 
linear combination of these i.e. 

  

x
A
= D cos !

1

2
" !

2

2( )
1
2

t + E cos !
1

2
+!

2

2( )
1
2

t

x
A
= D cos !

1

2
" !

2

2( )
1
2

t " E cos !
1

2
+!

2

2( )
1
2

t

 

This is our familiar pattern where D and E are determined by the boundary conditions. 
A final example 
Two masses attached by springs of constant k as shown. What are the normal frequencies of 
the system? 
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T

1
= kx

A
T

2
= k x

B
! x

A( )  
Equation of motion: 

   

m!!x = k x
B
! x

A( ) ! kx
A
= kx

B
! 2kx

A

m!!x = !k x
B
! x

A( ) = !kx
B
+ kx

A

"

!!x
A
= #

o

2
x

B
! 2#

o

2
x

A
#

o

2
=

k

m

$
%&

'
()

!!x
B
= !#

o

2
x

B
+#

o

2
x

A

 

Assume 
 
x

A
= Ae j!t  and 

 
x

B
= Be j!t  

Then 

  

!"
2Ae j"t

= "
o

2Be j"t
! 2"

o
2Ae j"t

!"
o

2Be j"t
= !"

o
2Be j"t

+"
o

2Ae j"t

2"
o

2A ! "
o

2B = "
2A

!"
o

2A +"
o

2B = "
2B

 

We can write this in matrix form. 

  

2!
o

2 "!
o

2

"!
o

2 !
o

2

#

$
%
%

&

'
(
(

A

B

#

$%
&

'(
= !2 A

B

#

$%
&

'(
 

This is called an eigenvalue equation and the solutions of this equation for  !
2  are called the 

eigenvalues. The column vector with components A and B is an eigenvector. We also have: 

  

2!
o

2
" !

2( )A " !
o

2
B = 0

"!
o

2
A + !

o

2
" !

2( )B = 0

 

giving 

  

2!
o

2 " !2( ) "!
o

2

"!
o

2 !
o

2 " !2( )

#

$

%
%
%

&

'

(
(
(

A

B

#

$
%

&

'
( = 0  

This has a non-zero solution if the determinant of the matrix vanishes i.e. if 

  

2!
o

2
" !

2( ) !
o

2
" !

2( ) = !
o

4

2!
o

4
+!

4
" !

2
!

o

2
= !

o

4

!
4
" 2!

o

2
!

2
+!

o

4
= 0

 

This is a quadratic equation in !
2 . 

Therefore 

A
x  

2
T  

1
T  

k  
B
x  

A  B  
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!2
=

2!
o

2
± 9!

o

4 " 4!
o

4#
$

%
&

2

= !
o

2
3 ± 5( )

2

=
k

2m
3 ± 5( )

 

These are the normal frequencies of the two normal modes. 
NB: we could find the corresponding values of A and B by substituting solutions for  !

2  into 
our eigenvalue equation. 

 
7. Waves 

We are all familiar with waves in everyday life e.g. sound waves, ripples spreading on a lake. 
Here some sort of displacement travels through a medium but the medium itself is not 
transported. The energy is transported. The waves can be transverse so the displacement is 
perpendicular to the propagation axis e.g. pulses travelling down a string, or they can be 
longitudinal where the displacement is along the propagation axis e.g. sound waves. There is a 
strong link between and coupled oscillators as the number of masses increases from 2N 
corresponding eventually to a continuous distribution of mass along a string. 
 
7.1 Travelling Waves 

(a) Pulses of constant shape 
We see that the wave pulse travels along the string at a certain velocity, say v, and in our 
demonstration (roughly) holds its shape. 
Let’s model our pulse by a Gaussian function, this has roughly the correct shape and can 

be easily handled mathematically. 
  
y = Ae

!
x2

a2 is a typical Gaussian function. 

 
When  x = 0 , 

 
y = A  

When x = ±a , 
 
y =

A

e
 

I.e. the “width” of the Gaussian is 2a. 

Let’s now consider  
  
y = Ae

!

x!b( )
2

a2  

Now 
  
y = A peak max( )  when x = b , i.e. changing the variable from x  to 

 
x ! b( )  has moved 

the Gaussian to the right. 
Now let  b = vt where v is the velocity and t is time. 

  
y = Ae

!
x!vt

a

"
#$

%
&'

2

 

0x =  

A 
a 

y 

b 

2

A  

2
x

ay Ae

! "#$ %
& '=  

( )
2

x b

a
y Ae

! "#
#$ %$ %
& '=  
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This function corresponds to the Gaussian moving at constant velocity v to the right, just 
like our pulse on the string. So changing the variable from x to  x ! vt  makes the Gaussian 
move. 

 
 

(b) Travelling sine waves 

Consider first
  

y = Asin 2!
x

"
#
$%

&
'(

.  x  and !  both have dimensions of length. The sine function 

goes through a complete cycle as x goes from 0 to ! , where !  is the wavelength of the 
wave. 

Now change the variable from  x  to  x ! vt  i.e. 
  

y = Asin
2!
"

x # vt( )
$
%&

'
()

 

 
This represents a continuous sine wave that is travelling from left to right. 
NB: y is a function of two variables x and t. 
(i) if t is fixed, it is like a snapshot of waves on a lake. 
(ii) if x is fixed, bobbing up and down on the lake. 
 

7.2 The Wave Equation 

A particular example (solution),
  

y = Asin
2!
"

x # vt( )
$
%&

'
()

. 

Then, 
  

!y

!x
=

2"

#
Acos

2"

#
x $ vt( )and

  

!2y

!x2
=

2"
#

$
%&

'
()

2

Asin
2"
#

x * vt( )
$
%&

'
()

. 

Similarly, 
  

!y

!t
= "v

2#
$

%
&'

(
)*

Acos
2#
$

x " vt( )
%
&'

(
)*

and
  

!2y

!t2
= " "v( )

2 2#
$

%
&'

(
)*

2

Asin
2#
$

x " vt( )
%
&'

(
)*

. 

Thus
  

!
2y

!t2
= v2 !

2y

!x2
. This is the one-dimensional wave equation (1DWE). 

Any function of x ! vt , i.e. 
 
f x ! vt( ) is a solution of the 1DWE. 

 

y 2
x

ay Ae

! "#$ %
& '=  

v 

y  
At time 

0t =  

At 
time t 

λ 

v  

vt  
x  

( )
2

siny x vt
!" #

= $% &'( )
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7.3 The velocity of waves on a stretched string 

Magnified portion of string: 
 

 
String is stretched to uniform tension T mass/unit length = µ  
Consider a small element of the string between  x  and  x + dx  and resolve forces acting on 
element into x and y components. 
Assume transverse displacement is small so that !  and ! + "!( )  are small, i.e. sin! = ! . 

Therefore 
 
F

y
!T " + #"( ) $T" =T#"  

Similarly 
  
F

x
!T cos " + #"( ) $T cos" =T $T = 0  since  cos! "1 for small ! . 

Now using Newton’s law  F = ma  we obtain
 
T!" = ma

y
 (1). 

 
m = µ!x and 

  

a
y
=
!

2y

!t2
 

Therefore 
  

ma
y
= µ!x

"
2y

"t2
 (2). 

We can find !"  through the following way: 

We have
  
tan! =

"y

"x
. Therefore 

  

!
2y

!x2
=

!

!x
tan" =

d

d"
tan"

!"

!x
= sec

2
"
!"

!x
 

 

sec
2
! =

1

cos
2
!

"1 for small ! . 

  

!
"

2
y

"x
2
#
"$

"x
#
%$

%x

! %$ #
"

2
y

"x
2
%x

 

Therefore 
  

T!" =T
#

2y

#x2
!x  (3) 

Combining (1), (2) and (3) we obtain: 

  

µ!x
"

2y

"t2
=T!x

"
2y

"x2
 

or 
  

!
2y

!t2
=

T

µ

!
2y

!x2
 

T 

x x x+ !  

θ 

y 

x 

! + "!  

( )sinT ! + "!  
T 
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This is the 1DSE for a stretched string. 

Compare with
  

!
2y

!t2
= v2 !

2y

!x2
. By comparison 

  

v
2
=

T

µ
  

  

v =
T

µ

!
"#

$
%&

1
2

 where v is the speed of 

travelling waves along the string. 
 

7.4 Standing Waves on a stretched string 
Now consider a stretched string fixed between points at   x = 0  and x = L , e.g. a plucked guitar 
string. 

 
The displacement of each element of the string can be described by 

  
y x,t( ) = f x( )cos!t  

where 
 
f x( )  is the amplitude variation of the oscillation of each element of the string.   cos!t is 

because all the elements of the string vibrate at the same angular frequency, c.f. coupled 
oscillators. 
Therefore 

  

!y

!t
= "#f x( )sin#t

!
2y

!t2
= "#

2f x( )cos#t

 

Similarily
  

!
2y

!x2
=

d2f x( )
dx2

cos"t . 

Substitute these into the one-dimensional wave equation 
  

!
2y

!t2
= v2 !

2y

!x2
 to obtain: 

  

!"
2
f x( )cos"t = v

2
d

2
f x( )

dx
2

cos"t  

i.e.
  

d
2
f x( )

dx
2

= !
"

2

v
2

f x( ) . 

This is a familiar differential equation – compare this with SHM. 

Since 
  
f x( ) = 0  at   x = 0  then the appropriate solution is

  

f x( ) = Asin
!
v

"
#$

%
&'

x . 

We also have the boundary condition that 
  
f x( ) = 0  at x = L . 

Therefore 
  

Asin
!L

v

"
#$

%
&'
= 0  which is satisfied if 

 

!L

v
= n"  where n is an integer. 

 

!
"

v
=

n#

L
and

  

f x( ) = Asin
n!x

L

"
#$

%
&'

. 

Thus !  depends on n and so we write it as
 
!

n
. 

Therefore the permitted angular frequency for each mode, n is: 

  

!
n
=

n"v

L
=

n"
L

T

µ

#
$%

&
'(

1
2

and
  

y
n

x,t( ) = A
n

sin
n!x

L

"
#$

%
&'

cos(
n
t . 

0x =  x L=  
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NB: since   ! = 2"f  and  v = f!  then: 

  

!
n
L

v
= n"

2"fL

f#
n

= n"

#
n
=

2L

n

 

NB: we also use greek letter !  (nu) for the frequency. 

 
We can look at this result in a different way. Let’s use the identity 

  

sin AcosB =
1

2
sin A ! B( ) + sin A + B( )"
#

$
%  

giving: 

  

sin
n!x

L

"
#$

%
&'

cos(
n
t =

1

2
sin

n!x

L
) (

n
t

"
#$

%
&'
+ sin

n!x

L
+(

n
t

"
#$

%
&'

"

#$
%

&'
 

If we now substitute for 
 

!
n
=

n"v

L
 we obtain: 

  

y
n

x,t( ) =
A

n

2
sin

n!
L

x " vt( ) + sin
n!
L

x + vt( )
#
$%

&
'(

.  

Consider the first part and for simplicity take  n = 1 i.e.
  

A
1

2
sin

!

L
x " vt( ) . 

Recall 
  
y = sin

2!

"
x # vt( )  - a continuous sine wave moving at velocity v. By comparison, we 

recognise 
  

A
1

2
sin

!

L
x " vt( )  as a wave travelling in the positive x-direction with 

  

!

L
=

2!

"
 

i.e.  ! = 2L . 

Similarly 
  

A
1

2
sin

n!

L
x + vt( )  is a wave travelling in the negative x-direction. 

Conclusion: our standing wave is the sum of two travelling waves in opposite directions. 

1n =  

2n =  

3n =  

x L=  0x =
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7.5 The wave number, k 

We have for a travelling wave: 

  

y x,t( ) = Asin
2!
"

x # vt( ) = Asin
2!x

"
#

2!vt

"
$
%&

'
()

. 

The wave number, k is defined as
 

2!

"
. We also have  v = !f  where

  

f =
!

2"
. 

  

!
2"v

#
=

2"#f

#
= $  

giving
  
y x,t( ) = Asin kx ! "t( ) . 

NB: In some text books (including French) k is defined as
 

1

!
. Of course none of the physics 

changes and so if you keep consistently to one of these definitions then there will be no 
problem. 
 

7.6 The Dispersion of Waves 
In general the velocity of a wave varies with wavelength. This is called dispersion e.g. 
dispersion occurs when white light (containing different frequencies) is passed through a 
glass prism. The light splits up into a rainbow of colours because the light of different colours 
(wavelengths) travels at different velocities in glass. 

 
v

red
< v

blue
and so the angle of refraction 

also varies. 
 
7.7 Phase & Group Velocities 

For dispersion we need to think in terms of two distinctly different velocities, Consider two 
waves travelling in the same medium with the same amplitude but with slightly different 
frequencies. 

  

y
1
= Asin k

1
x ! "

1
t( )

y
2
= Asin k

2
x ! "

2
t( )

 

where 
  

v
1
=
!

1

k
1

v
1
=
!

2

k
2

v
1
" v

2
 

 v is the velocity 
 k is the wave number 
! is the frequency 
The superposition of these waves is the resultant displacement 
i.e. 

  
y = A sin k

1
x ! "

1
t( ) + sin k

2
x ! "

2
t( )( )  

Using 
  
sin A + B( ) + sin A ! B( ) = 2sin AsinB s 

and letting 
  
A + B = k

1
x ! "

1
t( )  and

  
A ! B = k

2
x ! "

2
t , we obtain: 

  

y = 2Asin
k

1
+ k

2

2

!

"#
$

%&
x '

(
1
+(

2

2

!

"#
$

%&
t

!

"
#

$

%
& cos

k
1
' k

2

2

!

"#
$

%&
x '

(
1
' (

2

2

!

"#
$

%&
t

!

"
#

$

%
&  

Now let
  

k
1
! k

2

2
! "k , 

 

!
1
" !

2

2
= #! , 

  

k
1
+ k

2

2
= k  and 

 

!
1
+!

2

2
= !  i.e. the average values of 

wave number and frequency, so that: 

   

y = 2Asin kx ! "t( )
C

! "## $##
cos #kx ! #"t( )

D

! "## $##
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Part C represents a travelling wave with velocity
 
v

p
=
!

k
= f" . This is the phase velocity 

(sometimes called the wave velocity). 

Part D represents a travelling wave with velocity
 
v

g
=
!"

!k
#

d"

dk
. This is the group velocity. 

 
http://www.phys.virginia.edu/classes/109N/more_stuff/Applets/sines//groupVelocity.html 
 
Note that the individual wave crests (the high frequency waves) move with the wave velocity, 

 
v

p
, and the low frequency envelope (modulation) moves with the group velocity. 

See the PC1203 Webpage on the teachweb. 
It is important to note that energy and information are carried at the group velocity. 
 

 
 

Example: Waves in deep water are strongly dispersive. Here the phase velocity 
  

v
p
=

g!
2"

#
$%

&
'(

1
2

 

NB: note the dependence on λ and on g, the acceleration due to gravity. 

  

k =
2!

"
giving

  

v
p
=

g

k

!
"#

$
%&

1
2

=
'
k

. Rearranging gives
  
! = gk( )

1
2 . Therefore: 

  

d!
dk

=
1

2
g

1
2k

" 1
2 =

1

2

g

k

#
$%

&
'(

1
2

=
1

2
v

p
. 

In this example the group velocity is half the phase velocity. 
 

7.8 Interference of Waves 
When waves with a well defined phase relationship come together, interference will occur. If 
the phase difference is zero then we have constructive interference. 

 
If the phase difference is π then we have destructive interference. 

2
I A=  2

4I A=  

group
v  (Modulation 
change) 

phase
v  (Individual waves) 
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A good example of this is Young’s double-slit experiment. 
 

 
Monochromatic light of wavelength λ is incident on the two slits. The waves come from the 
same source, the laser and so they have a well-defined phase relationship. They are said to 
be coherent. 
The distance between slits is equal to a. 
The distance to the screen is equal to D. 

  
D >> !, D >> a  
Each slit acts as a source of secondary waves. The resultant displacement at P due to these 
two waves, each having amplitude 

  
A

1
 is: 

   
Y = A

1
cos k!

1
! "t( ) + A

1
cos k!

2
! "t( )  

Recall
 
cos ! " #( ) + cos ! + #( ) = 2cos! cos# . 

As before letting 
   
! " #( ) = k!

1
" $t( )  and 

   
! + "( ) = k!

2
# $t( )  then: 

   

! =
k !

2
+ !

1( )
2

" #t

$ =
k !

2
" !

1( )
2

 

Therefore: 

   

Y = 2A
1
cos

k !
2
+ !

1( )
2

! "t

#

$

%
%

&

'

(
(
cos

k !
2
! !

1( )
2

#

$

%
%

&

'

(
(

 

Since a << D , 
   

!
1
! !

2
!

D

cos"
! D  since θ is small: 

   

Y = 2A
1
cos kD ! "t#$ %&cos

k'!

2

#

$
(

%

&
)  

The intensity
   

= y 2
= 4A

1

2
cos

2 kD ! "t#$ %&cos
2 k'!

2

(
)*

+
,-

 

Note the intensity is 4 times greater than that of a single wave. 

  
cos

2
kD ! "t( ) is the time varying part. 

a  

D  

x  

P  
1
!  

2
!  

!  

L!  
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cos
2 k!!

2

"
#$

%
&'

is the spatially varying part. 

Time average of 
  
cos

2
kD ! "t( )  is equal to ½. 

 

Mathematically 
  

1

T
cos

2
kD ! "t#$ %&dt

0

T

' =
1

2
 

Therefore the time average of intensity 
   

I = 2A
1

2
cos

2 k!!
2

"
#$

%
&'
= I

o
cos

2 k!!
2

"
#$

%
&'

 

where 
 
I
o

 is the maximum intensity of the interference fringes. 

   !! " asin#  

  

I = I
o

cos
2 kasin!

2

"
#$

%
&'
= I

o
cos

2 (asin!
)

"
#$

%
&'

 

The intensity maxima occur when 
  

!asin"
#

$
%&

'
()
= n!  i.e. when 

  

sin! =
n"

a
 with n being an 

integer or zero. 

For small ! , 
  

sin! " ! "
x

D
 and intensity maxima occur at distances x from point 0 given 

by
 

x =
n!D

a
. 

 
NB: in our analysis we neglected the finite length of the slits. 

!  

1.0  

0.5  

cos!  

Intensity 

o
I  

!  
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7.9 Diffraction of Waves 
Waves bend around corners. 
Consider a single slit. 

 
Huygens Principle: each point on a wavefront acts as a source of secondary wavelets. We 
divide the slit up into infinitely small elements of width dx , and consider the wavelet from the 
small element at a distance x. 
At point P the wavelet has an amplitude which is proportional to dx . 

 
A = !dx  where !  is a 

constant of proportionality. The path difference between elements at  x  and   x = 0   = xsin! . 
Therefore the wavelet at P from element  dx  of slit at  x  can be represented 
by

   
dY = !dxcos k ! + xsin"( ) # $t( ) . Compare with

  
y = Acos kx ! "t( ) . Adding the contributions 

from all wavelets across the slit, the resultant disturbance at P is 

   

Y = !dxcos k ! + xsin"( ) # $t%& '(#d

2

d

2)  assuming that ! has a constant value across the slit. 

This integral can be readily evaluated to give: 

   

Y = !d cos k! " #t( )
sin 1

2
kd sin$%

&'
(
)*

1
2

kd sin$

+I = !2
d

2
cos

2
kl " #t( )

sin
2 1

2
kd sin$( )

1
2

kd sin$( )
2

 

and the time averaged intensity: 

  

I = I
o

sin
2 1

2
kd sin!( )

1
2

kd sin!( )
2

 

The function 

  

sin
2 1

2
kd sin!( )

1
2

kd sin!( )
2

=
sin

2
"

"
2

 has its’ maximum value, unity, when ! = 0 . 

i.e. 
 

sin
2
!

!
2

"
!

2

!
2
"1when !" 0 . 

The maximum intensity thus occurs when ! = 0 . The function has zeros when  sin! = 0  

but ! " 0 , e.g. the first zero occurs at 
  

! = 1
2

kd sin" = # = 1
2

2#

$
d sin"  or  d sin! = " . For 

light  ! << d  and thus  sin! ~ !  giving the first zero at
 

! =
"

d
. Resultant diffraction pattern looks 

like: 

O 

P 
!  

x 

sinx !  

d 
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Limit to angular resolution 
Diffraction limits the angular resolution of optical instruments and hence their imaging 
capabilities, e.g. the ability of a telescope to distinguish two stars very close together. E.g. the 
Lovell telescope at Jodrell Bank  d = 76m , looking at radiation 

of
  
1GHz = 10

9
Hz( ) ,

  

! ~
3x10

8

10
9

x76

~ 0.23
o . 

 
Double-slit  with non-zero widths 
Above we ignored the finite width of the two slits. In fact, the finite width of both slits produces 
a diffraction pattern that modulates the intensity of the interference fringes. The more exact 
distribution is given by: 

   

I = I
o

cos
2 !asin"

#
$
%&

'
()

int erference fringes

! "## $##

sin
2 1

2
kd sin"( )

1
2

kd sin"( )
2

diffraction pattern

! "### $###

 

 
 
 
 
 
 
 

Intensity 

o
I  

x  

d
x  

!  

Intensity  
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8. AC Circuits 

Recap. For DC circuits we have Ohm’s law 
 

I =
V

R
 where R is the resistance or impedance of 

the circuit, and I, V and R are all real quantities e.g.
  
V = 15Volts , 

  
R = 50 ohms 

  
I = 0.3 amps . 

In an AC circuit, the voltage and current alternate (oscillate). Also the circuit impedance is in 
general a complex quantity, because it usually contains C’s and L’s as well as R’s. 

 
 
Thus 

  
V t( ) =V

o
cos!t  where 

 
V

o
 is the amplitude and !  is the angular frequency. The current 

alternates at the same frequency as the voltage, but there is in general a phase shift between 

 
I t( )and 

 
V t( )  i.e.

  
I t( ) = I

o
cos !t + "( ) . Our job is to find 

 
I
o

 and !  for a given 
 
V t( )  and circuit 

components R, L and C. 
It is very convenient to use the complex representation for 

 
V t( )  and 

 
I t( )  since it carries 

information about both the amplitude and the phase. 
Thus 

 
V t( )  is represented by 

 
V

o
e j!t  where the real part of 

 
V

o
e j!t  is the actual 

voltage
  
=V

o
cos!t( ) . Similarly 

 
I t( )  is represented by

 
I
o
e

j !t+"( ) . 
Ohm’s law now becomes: 

 
I
o
e

j !t+"( )
=

V
o
e j!t

Z
 

where z is the complex impendence of the circuit. 
 
8.1 Complex Impedance 

 
As noted above, the impedance of a resistor is real. Thus the phase difference between 

 
I t( )  

and 
 
V t( )  is zero. 

 
 
 

o
V  

o
I  

!  

~ V  

I  

R  

t  

t  

V  

I  
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Complex Impedance of a Capacitor 

 

We have 
 
C =

q

V
 and so 

 
I =

dq

dt
= C

dV

dt
 

In our case 
 
V =V

o
e j!t  and 

 
C

d

dt
V

o
e j!t( ) = j!CV

o
e j!t  

Therefore 
 
I = I

o
e

j !t+"( )
= j!CV

o
e j!t  (1) 

c.f. 
 
I
o
e

j !t+"( )
=

V
o
e j!t

Z
 

The complex impedance of a capacitor is
  

1

j!C
. 

The factor k in equation (1) tells us that the current leads the voltage by
 

!

2
. 

Note also that the ratio of the amplitudes: 

  

V
o

I
o

=
1

!C
=

1

j!C
 

The magnitude of the impedance. 
In this way, we talk about the magnitude of the impedance of a capacitor at a particular 
frequency, e.g. the impedance of a   1x10

!6 farad capacitor at   1kHz  

is
  

1

2!x1x10
3

x1x10
"6

= 159ohms . 

 
Complex impedance of inductor L 

 

  

V = L
dI

dt
! I =

1

L
Vdt"  

Again 
 
V =V

o
e j!t  and 

  

1

L
Vdt! =

1

j"L
V

o
e j"t  

Therefore 
  

I = I
o
e

j !t+"( )
=

1

j!L
V

o
e j!t  (2) 

c.f. 
 
I
o
e

j !t+"( )
=

V
o
e j!t

Z
 

i.e. the complex impedance of an inductor is
 
j!L . The magnitude is !L . 

~ V  

I  
t  

t  

V  

I  
L  

~ V  

I  

C  

t  

t  

V  

I  
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The factor 
  

1

j
= ! j  in equation (2) tells us that the current lags the voltage by

 

!

2
. 

 
8.2 The LCR Circuit 

 
Since L, C and R are in series: 

  

Z
LCR

= Z
R
+ Z

C
+ Z

L

= R +
1

j!C
+ j!L

= R + j !L "
1

!C

#
$%

&
'(

 

Therefore 

  

I
o
e

j !t+"( )
=

V
o
e j!t

R + j !L #
1

!C

$
%&

'
()

 

Cancelling through by e
j!t ; 

  

I
o
e j!

=
V

o

R + j "L #
1

"C

$
%&

'
()

 

To find 
 
I
o

 and ! , we multiply the top and bottom by 
  

R ! j "L !
1

"C

#
$%

&
'(

#

$%
&

'(
 i.e. the complex 

conjugate. 

  

I
o
e j!

=
V

o

R + j "L #
1

"C

$
%&

'
()

x

R # j "L #
1

"C

$
%&

'
()

R # j "L #
1

"C

$
%&

'
()

=
V

o

R2 "L #
1

"C

$
%&

'
()

2
R # j "L #

1

"C

$
%&

'
()

$

%&
'

()
 

Remembering that 
  
I
o
e j!

= I
o

cos! + j sin!( )  and equating real and imaginary parts: 

  

I
o

cos! =
V

o
R

R
2 "L #

1

"C

$
%&

'
()

2

I
o

sin! =

#V
o

"L #
1

"C

$
%&

'
()

R
2
+ "L #

1

"C

$
%&

'
()

2

 

Squaring and adding: 

~ V  

C  

L  

R  
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I
o

2
=

V
o

2
R

2
+ !L "

1

!C

#
$%

&
'(

2#

$
%
%

&

'
(
(

R
2
+ !L "

1

!C

#
$%

&
'(

2#

$
%
%

&

'
(
(

2
=

V
o

2

R
2
+ !L "

1

!C

#
$%

&
'(

2

I
o
=

V
o

R
2
+ !L "

1

!C

#
$%

&
'(

2#

$
%
%

&

'
(
(

1
2

 

Dividing: 

  

tan! =

"V
o

#L "
1

#C

$
%&

'
()

R
2
+ #L "

1

#C

$
%&

'
()

2$

%
&
&

'

(
)
)

V
o
R

R
2
+ #L "

1

#C

$
%&

'
()

2$

%
&
&

'

(
)
)

=

" #L "
1

#C

$
%&

'
()

R

 

Note that 
 

I
o
=

V
o

Z
LCR

and 
  

tan! =
Im Z

LCR( )
Re z

LCR( )
 which are the general results for any AC circuit. 

Note also that the phase angle changes as !  is varied. At a particular frequency
 
!

o
: 

  

!
o
L "

1

!
o
C

= 0

!
o
=

1

LC

 

At
 
! = !

o
, 

 

I
o
=

V
o

R
 and it has its maximum value and 

 
tan! = 0  so that the current and the 

voltage are in phase. 

 
!

o
 

 is the resonant frequency of the circuit, which nicely takes us back to our previous discussion 
of the resonant LCR circuit. 
 


