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1. Vectors 
1.1 Definition, Addition and Subtraction 

As physicists we are concerned with objects which represent physical quantities. 
 
Scalar function / field: T(x). This could tell us the temperature at position X. It is 
specified by a number. No direction is mentioned. E.g. Mass. 
Vectors: Objects characterised by both a magnitude and direction. e.g. the relative 
displacement of two points, P and Q. An example is velocity, which might be represented 
as V. Other examples include Momentum and Angular Velocity. 

 
PQ is the displacement vector from P to Q. The vector tells us that Q lies 7km 
(magnitude) from P at a bearing of 20o (Direction) 
 
Vector addition: if A denotes the displacement north by 3km and B the displacement east 
by 4km, then we can say C = A + B. Clearly A + B = B + A, although addition is 
commutative. It is also clear that ( ) ( )CBACBA ++=++  for any A, B, and C. 
We can define the negativity of a vector as 

 
So we can introduce subtraction of vectors, obvious A+(-A)=0, or A-A=0  0 is a null 
vector. 
Find the property that is ( ) BABA λλλ +=+  (λ is a scalar). 
i.e. addition is distributive. 
It follows from rescaling the vectors. 
We can solve numerous problems using this geometric effect: 
e.g. a mass of 100kg is at the midpoint of the rope suspended as in the sketch. What is 
the tension in the rope? 
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In equilibrium the sum of all the forces is zero. 
021 =++ wTT  
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Hence NNTT 3
21 10≈==  

1.3 Components 
So far we needed to draw a diagram in order to add or subtract vectors. 
Seek an algebraic representation. 
e.. any 2D vector can be expressed as a sum of two other vectors. Convenient to choose 
“basic vectors” to be parallel to the co-ordinate axis. 
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i and j are base vectors and have unit length. 
e.g. 

 

3
4tan =θ  

What is V in components? 
V = 3i+4j = (3,4) 
This can be generalised to 3D  need a 3rd basis basic vector parallel to the z-axis. 

 ( ) 332211,, cVcVcVVVVkVjViVV kjxzyx ++==++=  
n.b. we just picked up a right-handed coordinate system (i.e. z-axis points “up”) 
The magnitude of the vector is obtained by Pythagoras. 
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22
yx AAA +=  

In 3D: 
222

zyx AAA ++=θ  
It is also clear that: 

( ) ( ) ( )kBAjBAiBABA zzyyxx +++++=+  
 

1.4 Unit Vectors 
Vectors of magnitude 1 are called unit vectors (i.e. i, j, k) 
e.g. to find a unit vector which is parallel to b(1,1,3) 

( )
11

3

11
3,1,1ˆ

11
kji

b

b
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==

=
 

 
1.5 Position Vectors 

Consider a point P. We can represent the location of P relative to an origin O by 
specifying its’ position vector. 

 
Clearly 

OPr

kzjyixOP

=

++=
 

Also 222 zyxr ++=  
Relational positions are easy to compute. 
e.g. consider 2 points P1 and P2 at r1 and r2. What is their relative positions? 
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rrPP

−=

−=
 

This last result can be used to derive the vector equation of a line. 
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( )oo rrrn −+= 1λ  

λ is some number. It varies from -∞ to +∞ to generate all points. 
r1 and ro are any two points on the line. 
 
Centre of Mass: 
Given a system of particles of mass m1, m2, ..., mn at positions r1, r2, ... , rn the location of 
the centre of mass is defined to be at: 

n

nn

mmm
rmrmrm

R
+++
+++

=
...
...

21

2211  

 
1.6 Scalar Product 

θcosBABA =⋅  
This is the definition of the scalar product. A·B is a scalar. 
It is often also called the “dot product”. 

 
( ) ( )ABBABA θθ coscos ==⋅  

e.g. a force F acts on a particle. Calculate the work done by F when the particle is 
displaced by an amount ∆r. 

 
Assume F is constant. 
Clearly ABBA ⋅=⋅  
Not so clear: ( ) CABACBA ⋅+⋅=+⋅  (Prove it!) 
For parallel vectors BABA =⋅  
For perpendicular 0=⋅BA  
e.g. derive the cosine rule: 

0 

r 
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r-ro 
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( ) ( )
babac

babaccc

bac
etc

aa

2

...

222

2

++=

+⋅+=⋅=

+=

=

 

But ( ) θθπ coscos ababba −=−=⋅  

Therefore θcos2222 abbac −+= . 
 
e.g. calculate BA ⋅  if A = (1,2,3) and B = (-1,2,1) 

( ) ( )
kkjkkikjjjijkijiii

kjikjiBA

⋅+⋅+⋅−⋅+⋅+⋅−⋅+⋅+⋅−=

++−⋅++=⋅

2632422

232
 

...

0
...

1

etc

ji
etc
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=⋅

=⋅

 

So 6341 =++−=⋅BA  
This generalises easily: 
i.e. if kAjAiAA zyx ++=  and kBjBiBB zyx ++=  

then zzyyxx BABABABA ++=⋅  
This is a scalar quantity i.e. it doesn’t depend on the choice of coordinates. 
e.g. zzyyxx BABABA +−  is not a scalar! 
 

1.7 Equation of a Plane 

 
Can specify the plane uniquely by specifying a point in the plane (ro) and a vector normal 
to the plane ( n̂ ). 

orrR
nR

−=
=⋅ 0ˆ

 

We want an equation for r. 
( ) 0ˆ =⋅−⇒ nrr o  

i.e. nrnr o ˆˆ ⋅=⋅  
This is the desired equation. 
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If 
( )zyxr

kcjbian

,,

ˆ

=

++=
 

Then nrczbyaxnr o ˆˆ =++=  

 
==⋅ αcosˆ oo rnr distance of plane from origin = d. 

So we can write: 
dczbyax =++  

Equivalent equation of plane. 
 
e.g. find the equation of a plane with normal ( )3,2,1=N  passing through the point ( )1,0,1− . 
How far is the plane from the origin? 
Equation of a plane 

dnr =⋅ ˆ  
ax+by+ca=d 
If kcjbian ++=ˆ  (nb: 1222 =++ cba ) 

 
Equation is nrnr o ˆˆ =⋅  where ( )1,0,1−=or . 

( )
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1.8 Vector Product 

Definition: nBABxA ˆsinθ=  

 
Use right-hand rule to work out which direction n̂  goes in. 
(Twisting anti-clockwise, up is n̂ ) 
Turn to get correct value. 

n̂  

r 
dnr =⋅ ˆ  
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n̂  ro 
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NB: AxB is a vector. n̂  is perpendicular to A and B. 
Also has a geometric interpretation: 

 
Area of parallelogram = |A|h 
But θsinBh =  

So area is BxA= . 

nBABxA ˆsinθ=  

As n̂ =1 this is not commutative!. 
Note: 

AxBBxA
AxBBxA

−=
≠

 

and ( ) CxABxACBxA +=+  
Note that 0=BxA  for parallel vectors. ( )0sin =θ  
 
e.g. simplify ( ) ( )baxba µλ ++  (λ and µ are scalars) 

( ) ( )
( )( )bxa

bxabxa
bbabaa

λµ
µλ

µλµλ

−=
+−=

+++= 22

 

 
Let us try to figure out a formula for BxA  in components. 

( ) ( )kBjBiBxkAjAiABxA zyxzyx ++++=  
We will get things like: 

jixk

jkxi

ijxk

ikxj

kixj

kjxi

kxkjxjixi

−=

=

−=

=

−=

=

=== 0

 

jxkBAixkBAjBAixjBAkxjBAkBABxA yzxzzyxyzxyx +−+++=  
Collect components: 

( ) ( ) ( )xyyxzxxzyzzy BABAkBABAjBABAjBxA −+−+−=  
Another way to write this is a determinant: 

zyx

zyx

BBB
AAA
kji

BxA =  

1) Select i and cover up column and row it’s in 
2) Cross-multiply the 4 values which remain uncovered, i.e. yzzy BABA −  
3) Repeat for -j and k. 
 
e.g.: 
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( )
( )1,2,1

3,2,1
−=

=
B
A

 

Show that ( )4,4,4 −−=BxA  
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

kji

kji

xxkxxjxxi

BABAkBABAjBABAiBxA xyyxzxxzyzzy

444

221362

122111312312

+−−=

++−−+−=

++−−+−=

−+−+−=

 

 
Calculate BxA  when ( )3,2,1=A  ( )1,2,1−=B  

( ) ( ) ( )

( )4,4,4

444

221362
121
321

−−=

+−−=

++−+−=

−
=

kji

kji

kji
BxA

 

 
1.9 Applications of the Vector Product 

Some examples from dynamics: 
Torque Fxr=τ  

 
θτ sinFr=  which is sensible. 

τ is into the paper 
 tells us sense in which torque tends to induce rotation. 

Also meet angular moment 
PxrL =  

(Angular momentum relative to some origin) 

Key equation in rotational dynamics is 
dt
Ld

=τ  (See later) 

dt
Pd

F =  

Vector product also appears in electricity and magnetism. 
BxVqF =  (F=qVB or F=BeV) 

q = electric charge 
V = velocity 
B = magnetic field 
 
e.g.: 
A rigid body rotates about an axis through 0. with angular velocity ω. Show that the linear 
velocity v of a point P in the body with position r is ωxrv = . 

0 

r 

F θ 
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Body rotates about axis through 0 parallel to ω (= angular velocity). 

ωRv =  

where R = radius of circle = θsinr  

So ωxrv =  
From sketch we see that 

rxv ω=  
 
e.g. a particle of mass 1kg is rotating about the z-axis at 4 rad.s-1 (i.e. ω=(0,0,4)rad.s-1) at 
a fixed distance from 0 and at a fixed angle to the z-axis. 

 
a) What is its’ velocity when it is at r(1,1,1) m? 

( ) 10,4,444
111
400 −−=+−=== msji
kji

rxv ω  

b) What is the angular momentum about 0 when it is at this point? 

( )

( )kji
kji

L

vmP
PxrL

844
044
111

0,4,4

+−−=
−

=

−==
=

 

n.b. L is not parallel to ω (of L=Iω). Lz=Izωz is true...) 
Note: we just evaluated two vector products i.e.:- 

( )ωxrxrmL =  
There is a quicker way to evaluate such a “triple vector product”. 
 

1.10 Triple Vector Product 
Identity: ( ) ( ) ( )CBABCACxBxA ⋅−⋅= . Proof? 
What is ( ) ( ) ( ) ( )BACABCBxAxCCxBxA ⋅+⋅−=−=?  
e.g. we just worked out 

θ r 

z, ω 

m=1kg 

0 

θ r 

V is into paper 

ω 

R 

0 
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( ) ( ) ( )[ ]

( )
( )

( ) ( )( ) ( )unitsL
kgm

srad

mr

rr
rrr

rrrrmrxxrmL

8,4,44,0,031,1,14
1

.4,0,0

1,1,1
1

2

−−=+−=
=
=

=

=

=⋅

⋅−⋅−==

−ω

ωωω

 

Which is as above. 
 

1.11 Scalar Triple Product 
We also compute ( ) CBxA ⋅  Scalar Triple Product. 
Aside  ( ) CBxA ⋅  is a third way to multiply by three vectors. It is a vector, and is easy to 
compute. 
 
Question: is ( )CBxA ⋅  interesting? It is meaningless, as B dot C is a scalar, and you can’t 
do a cross product with a scalar. 

 
The above is a box formed by A, B and C. 
Parallelepiped (all forces parallel in pairs) 
( ) ϕcosCBxACBxA =⋅  

Volume of box = (area of base)x(perpendicular height) ( ) CBxACBxA ⋅== ϕcos  
This interpretation allows us to see that: 
( ) ( ) ( )AxCBCxBACBxA ⋅=⋅=⋅  

( ) ( ) ...etcBxCACxBA ⋅−=⋅  
e.g show that: 

( )

( ) ( ) ( )

( )

( )[ ]( )
( ) ( )yzzyxyzzyx

xyzzy

zyx

zyx

zyx

xyyxzzxxzyyzzyx

zyx

zyx

zyx

BABACBABAiiC

iCBABAi

kCjCiC
BBB
AAA
kji

BxA

BABACBABACBABAC

BBB
AAA
CCC

CBxA

−=−=

++−=

++⋅=

−+−+−=

=⋅

.

......
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C 

θ 

φ 

AxB 
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1.12 Intersecting Planes 
e.g. find the point of intersection of the 3 planes: 

( )
( )

( )31
243

13233

−=++
−=++
−=++

zyx
zyx

zyx
 

Can solve by “brute force”: 
Using (3): yxz −−= 1  

Into (2): 

2
1

2
21

122
4333

−−=
−−

=

=−−
=−−++

xxy

yx
yxyx

 

Put these into (1): !312
2
3

2
112

2
133 ≠++−















 −−−−+






 −−+ xxxx  

There is no solution! The planes do not meet in a point. 

kjin

kjin

kjin

++=

++=

++=

3

2

1

3

233

 

 
Must be in this “Toblerone” configuration because n1, n2 and n3 are not parallel. 
When do 3 planes not meet in a point? 
Looking “end on” 

 
The other cases which have no solution also have the property that the normal vectors lie 
in a plane. 

I. 3 parallel planes 

 
321 ˆˆˆ nnn ==  

No solution at all. 
II. 2 planes the same: 

 
III. 3 planes the same. 

 
All points are solutions to the original equation. 

IV. 2 parallel, 1 inclined  no solution. 

 

n1 

n3 

n2 
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V. 2 coincidental, 1 inclined. Solution is a line. 

 
VI. All meet in a line. 

 
VII. Toblerone  no solution. 

 
 
All have the property that normals lie in the plane of the blackboard / page. 

 ( ) 0321 =⋅ nnn  
( )32 nn ⋅  is the vector out of (or into) the plane. i.e. 90o to n1. 
So we could have checked to see if a solution existed by calculating: 

( ) ( ) 0
111
311
233

111
3112,3,3321 ==⋅=⋅
kji

nxnn  therefore no unique solution. 

 
1.14 Differentiation of Vectors 

It is straight forward to differentiate vectors. Generally if A(s) is a vector which depends 
on s we can define: 

( ) ( )








∆

−∆+
→∆

=
s

sAssA
sds

Ad
0

lim
 

In components this reduces to: 

k
ds

dA
j

ds
dA

i
ds

dA
ds

Ad zyx ++=  

NB: i, j and k are fixed. 
 
e.g.:- 

k
dt
dzj

dt
dyi

dt
dx

dt
rd

v ++==  

is the velocity vector for a particle at position ( )zyxr ,,= . 
Newton’s Second Law becomes: 

vm
dt

rmd
P

dtPd
F

==

=
 

Clearly ( )
ds
Bd

ds
Ad

BA
ds
d

+=+  and 
( )

ds
dA

ds
Ad

ds
Ad λλ

λ
+= . 
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( )

( ) Bx
ds

Ad
ds
Bd

xABxA
ds
d

ds
Ad

B
ds
Bd

ABA
ds
d

+=

+=⋅
 

(Exercise: prove these) 
 
Note that the order matters in vector products. 
 
e.g. calculate the velocity and acceleration for a body whose position is 

( )0,sin,cos tRtRr ωω=  (R, ω are positive constants) 

 
We expect: 

rRa

Ra

rv

Rv

ˆ

0

2

2

ω

ω

ω

−=

=

=⋅

=

 

r̂  is the unit vector pointing radially outwards. 

( )

( ) ( ) rrRttRttRr
dt

rda

ttRr
dt

rd
v

22222
2

2
ˆ0,sin,cos0,sin,cos

0,cos,sin

ωωωωωωωωω

ωωωω

−=−=−=−−===

−===

&&

&

 

 
e.g. PxrL =  
Basic equation of rotational dynamics is: 

Fxn
dt
Ld
=  

Derive this for a particle at position r and momentum P. 
( )

Fxr
dt
Pd

xrPx
dt

rd
dt

Pxrd
dt
Ld

=+==  

S far basis vectors have been fixed – sometimes it is useful to use a moving basis (!) 
 
e.g. plane polar cords: 
Consider a particle moving in a plane. Its’ position at time t is (r,θ). Can use r̂  and θ̂  as 
basis vectors. 

 

x 

y 

ωt 
r(t) 

v 

R 

θ 

r 
(r,θ) 

r̂  θ̂  
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θ̂ , r̂  are unit vectors and are orthogonal ( )0ˆˆ =⋅ rθ . But they depend upon time, t. 

dt
rdrr

dt
dr

dt
rd

rrr
ˆ

ˆ

ˆ

+=

=
 

 

 
θθθθ ˆˆˆˆ ∆=∆=∆ rr  

So: 

θθ

θθ

ˆˆ

ˆˆ
0

lim

&& =

=






 ∆
→∆

=

r

dt
d

dt
r

tdt
rd

 

Hence: 
θθ ˆˆ &&& rrrr +=  Velocity in plane polar coordinates. 

 
e.g. uniform circular motion: 

θθθθθθ

ωθθ
&&&&&&&&&&&

&&

ˆˆˆˆˆˆ:

""ˆ

rrrrrrrrrraccel

rvrr

+++++=

=→=
 

θ&̂  is nasty! 
 
Look back at diagram: 

r 

∆θ 

r’ 

∆θ
∆θ

r̂θ̂

θ̂ ’ r̂ ’

r̂r̂ ’ 
∆θ 

∆ r̂  
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( ) rr ˆˆˆˆˆ θθθθθ && −=⇒−∆=∆  

Substitute into r&&  gives: 

( ) ( )
( ) ( )θθθθ

θθθθθθθθθ
ˆ2ˆ

ˆˆˆˆˆ
2 &&&&&&&&&

&&&&&&&&&&&&

rrrrrr

rrrrrrr

++−=

−+++=
 

For uniform circular motion, rrr ˆ2θ&&& −= . 
 
1.14 Rotations 

We might want to convert from one basis (i, j, k) to another (i’, j’, k’). How do we do it? 
e.g. consider 2D case: 

 

 

θθ

θθ

θθ

θθ

cossin''''

sincos''''

''''

cossin'

sincos'

yxyxy

yxyxx

yxyx

VVjjVjiVjVV

VVijViiViVV

jViVjViVV

jij

jii

+−=⋅+⋅=⋅=

+=⋅+⋅=⋅=

+=+=

+−=

+=

 

 
e.g. show that BA ⋅  is invariant under rotation of coordinate axis (Stick to 2D) 

( )( ) ( )( )
''

cossincossinsincoscos

''''

BABABABA

BBAABBsnAA

BABABABABA

yyxx

yxyxyxyx

yyxxyyxx

⋅=⋅=+=

+−+−+++=

+=+=⋅

θθθθθθθθ

 

θ̂θ̂ ’ 
∆θ 

∆ θ̂  

j' 

j 

θ 

θ 

sinθ cosθ 

i' 

i 

θ 

j' i' 

sinθ 

cosθ 
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So BA ⋅  is a scalar. 
e.g. ''2''2 yyxxyyxx BABABABA +≠+  
So yyxx BABA 2+  is not a scalar. 
The generalisation to 3D is in principle straight forward. 
Need 3 angles to specify a general rotation. 

 
θ and φ specify axis of rotation. 
Ψ specifies angle of rotation about that axis. 
Quite a bit more involved than the 2D case. 
 
There is a neat way to express 2D rotations: 

















−

=








y

x

y

x

V
V

V
V

θθ
θθ

cossin
sincos

'
'

 

This is a “rotational axis”. VRV ='  
Matrices are the subject of Section 4 of the course. 

x 

z 

y 
θ 

φ 

ψ 

Axis of Rotation 
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2. Determinants 
2.1 Linear Equations 

In physics we often encounter quantities which depend linearly on several others. 
e.g. rotations in 2D: 

θθ sincos' yxx +=  
“x’ is a combination of x and y” 
e.g. Hooke’s Law 
“F=-kx” 
Consider the case of 2 masses connected by springs. 
 

 
 
Let Fc = Force on left hand mass (Convention, Fc>0 if force acts to right) 
Let Fr = Force on right hand mass. 

( )
( )212

121

xxlkxF
xxkkxF

r

c

−−−=

−+−=
 

These are linear equations in x1 and x2. 
In general (i.e. for unequal masses and springs) we would have: 

( )
( )222121

212111

xKxKF
xKxKF

r

c

+−=

+−=
 

In our case: 

kK
kK
kK
kK

2

2

22

21

12

11

=

−=

−=

=

 

We can write these equations as: 
xKF −=   Matrix Equation 









=









=









=

2

1

2221

1211

x
x

x

KK
KK

K

F
F

F
r

c

 

Now let’s ask the following question: 
Start from equilibrium and apply external forces F1 and F2 to the left and right masses 
respectively. How far do the masses move before they again come to rest? 
In static equilibrium, the external forces must balance those from Hooke’s law, i.e. 

0,021 =+=+ rc FFFF  
Equivalently 









=

=+

2

1

0

F
F

F

FF

ext

ext

 










2

1

F
F

 is a column vector. 

 xKFext  

x1 x2 

k k k



PC 1171 - Vectors, Fields and Matrices  Semester 1 
 

18 

Can’t solve for x just by dividing by K  since it is a matrix. 
i.e. we must solve: 

)2(
)1(

2222121

1212111

−=+

−=+

FxKxF
FxKxK

 

Solving gives: 








 +
=

−
−

=








 +
=

−
−

=

k
FF

KKKK
FKFk

x

k
FF

KKKK
FkFK

x

3
2

3
2

12

21122211

121211
2

21

21122211

212122
1

 

Solution exists providing the denominator is not zero. i.e. 021122211 ≠− KKKK . 

But KKDet
KK
KK

KKKK ===−
2221

1211
21122211  

This is reminiscent of the intersecting planes problem. 
i.e.: 

1
43

3233

=++
=++
=++

zyx
zyx

zyx
 

There is a unique solution if 0
111
311
233
≠ . 

 
2.2 Determinants 

Let’s start with the general rule for evaluating determinants: 

3231

2221
13

3331

2321
12

3332

2322
11

333231

232221

131211

aa
aa

a
aa
aa

a
aa
aa

a
aaa
aaa
aaa

+−=  

The cofactor of a11 is 
3332

2322

aa
aa

, etc. 

The sign of the cofactor is determined by the pattern: 

+−+−
−+−+
+−+−
−+−+

etc... 

What is the cofactor of a21? 

3332

1312

aa
aa

−  

Can choose ANY row or column to evaluate a determinant. 
e.g. suppose Aij is the element of a matrix at row i and column j, then detA (i.e. the 
determinant of Aij) is: 

ininiiii CaCaCaA +++= ...det 2211 . 
i labels any row. 

NjNjjjjj CaCaCa +++= ...2211  
j is any column. 
 
e.g. Calculate the determinant of the matrix: 

















−
=

112
201
131

M  
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Choose the first row: 

141152
12
01

1
12

21
3

11
20

1det =++−=+
−

−
−

=M  

Do it again for the second row: 

14104
12
31

2
12

11
0

11
13

1det =+=−
−

+
−

−=M  

 
2.3 Uses of Determinants 

We have seen 2 examples (Spring and planes) of uses already. 
In general we can test to see if a system of linear equations has a solution by evaluating 
the appropriate determinant. 

ni

yxa i

N

j
jij

,...,2,1
1

=

=∑
=  

This is a set of linear equations which we might want to solve for the xi. 
e.g. pick n=2 

2222121

1212111

yxaxa
yxaxa

=+

=+
 

These n equations have a solution if: 

0...
...

det 24232221

14131211

≠=
MMMM

aaaa
aaaa

A  

If 0det =A  then either the equations are inconsistent or there is an infinity of solutions. 
e.g. does 



















=



















−
−

5
3
2
1

1012
4221
2001
1031

4

3

2

1

x
x
x
x

 

have a unique solution? 

Will if 280

1012
4221
2001
1031

=≠

−
−

 

 



PC 1171 - Vectors, Fields and Matrices  Semester 1 
 

20 

3. Fields 
3.1 Introduction 

A field is used to describe a physical quantity whose value depends upon position. If the 
value is just a number then it is a scalar field. If it is a vector then it is a vector field. 
e.g. classify the following: 
− Temperature in this room – scalar field. T(r) 
− Gravitational field in this room – vector field. g(r) 
− Magnetic field around a bar magnet – vector field. B(r) 
 

3.2 Functions of several variables 
Functions of only one variable are pretty rare in physics. e.g. T(x,y,z), U(p,V) etc… 
Functions of two variables can be represented as surfaces in 3 dimensions, or a contour 
map (e.g. Ordnance Survey or a weather map – isobars). 

 
 
3.3 Partial Derivatives 

Rates of change are crucial in physics. Need to understand how to do calculus with 
functions of >1 variable. 
For z=f(x,y): 

Define 




 −+
→

=







∂
∂

xδ
yxfyxδxf

xδ
Lim

x
f

y

),(),(
0

 

 

Clearly 
yx

f








∂
∂  tells us the rate of change of f(x,y) in the x-direction. 

Define 






 −+
→

=







∂
∂

yδ
yxfyδyxf

yδ
Lim

y
f

x

),(),(
0

 

 

Clearly 
xy

f








∂
∂  tells us the rate of change of f(x,y) in the y-direction. 

Hillside 

Line of 
constant Z 

f(x+δx,y) f(x,y) 

x+δx x 

y 

y+δy 

y 

x 

f(x,y) 

f(x,y+δy) 
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e.g. Given f(x,y)=x2+xy+4y2, calculate the slope of f(x,y) at a general point 
a) in the x-direction; 
b) in the y-direction. 
 
a) In the x-direction the slope is: 

( )x
y

fyx
x
f

=+=







∂
∂ 2  

Small y reminds us to keep y fixed. 
“Partial df by dx” 
fx is an alternative notation. 
 
b) In the y-direction the slope is: 

( )y
x

fxy
y
f

+=







∂
∂ 8  

 
Higher derivatives can be computed 

e.g. 
yyy x

f
x
f

x 










∂
∂

=


















∂
∂

∂
∂

2

2
 

In our case xx
y

f
x

f
==











∂

∂ 2
2

2
 

Similarly yy
x

f
y

f
==











∂

∂ 8
2

2
 

Also ( ) xyy
yx

f
yx
fyx

xy
f

x
=

∂∂
∂

==+
∂
∂

=



















∂
∂

∂
∂ 2

18  

( ) yxx
xy

f
xy
fyx

yx
f

y
=

∂∂
∂

==+
∂
∂

=



















∂
∂

∂
∂ 2

12  

i.e. 
yx
f

xy
f

∂∂
∂

=
∂∂

∂ 22
 

 
This is generally true, i.e. order of differentiation is unimportant. 
 
e.g. for 1 mole of an ideal gas pV=RT. 

What are 
pV

T




∂
∂  and 

vP
T




∂
∂ ? 

R
p

R
pV

V
VpT

VV
T

ppp
=








∂
∂

=



∂
∂

=



∂
∂ ),(  

R
V

R
pV

pp
T

VV

=







∂
∂

=



∂
∂  

 
3.4 Total Differentials 

How does f(x,y) change as we go from (x,y) to ( )yδyxδx ++ , ? 
Recall, for a function of 1 variable g(x) 

( ) xδ
dx
dgxgxδxggδ ≈−+= )(  (Taylor’s theorem) 

yδ
y
fxδ

x
ffδ

xy








∂
∂

+







∂
∂

≈  
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In the limit 0, →xδxδ  we can write dy
y
fdx

x
fdf

∂
∂

+
∂
∂

=  

df is called the “total differential” of f [NB generalizes to 3 dimensions 

dz
z
fdy

y
fdx

x
fdf

∂
∂

+
∂
∂

+
∂
∂

= ] 

y
f

∂
∂  implies 

zxy
f

,








∂
∂  i.e. all other values remain constant. 

 
e.g. f(x,y)=x2-xy+4y2. Estimate f(1.00001,1.00002) 
f(1,1)=4  wanted more accurately. 

( ) ( )

00015.4)00002.1,00001.1(

105.1101410

102

10

82

455

5

5

≈

=+=

=

=

+−+−=

−−−

−

−

f

xxfδ

xyδ

xδ

yδyxxδyxfδ

 

 
e.g. Suppose we walk along a path (x(t), y(t), z(t)) where z(t) is height above sea level. 
What is the rate at which we gain height? 

dt
tdz )(

=  

What if you were given z(x,y) and x(t) and y(t)? 

Can substitute for x(t) and y(t) into z(x,y) then do 
dt

tdz )(  

 

dt
dy

y
z

dt
dx

x
z

dt
dz

∂
∂

+
∂
∂

=  

We can work this out without substituting. 

Generalization of the chain rule 
dt
dx

dx
df

dt
df

=  

 
Suppose we now ask for the change in altitude for an infinitesimal displacement in the x-
direction along the path. 

zδ =(rate of change of altitude with x) xδ  

x
z
∂
∂  it is not this since y varies as we move along the path! 

dx
dy

y
z

dx
dx

x
z

dx
dz

∂
∂

+
∂
∂

=  

 

dx
dy

y
z

x
z

dx
dz

∂
∂

+
∂
∂

=   “total derivative of z with respect to x” 

View from above: 
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e.g. Suppose f(x,y) is such that x=x(u,v) and y=y(u,v). What is 
uv

f








∂
∂ ? 

[Again, it is possible to substitute back.] 
But much easier (usually) is to do: 

uuu v
y

y
f

v
x

x
f

v
f

dy
y
fdx

x
fdf









∂
∂

∂
∂

+







∂
∂

∂
∂

=







∂
∂

∂
∂

+
∂
∂

=

 

)(
inf..

lim
fδ

itesimalchangesall
df =  

 
3.5 Stationary Points 

Are points where “all slopes vanish”. 

i.e. for g(x,y) stationary points are at 0=
∂
∂

=
∂
∂

y
g

x
g  

See handout for test of nature. For a function of 2 variables there is a new type of turning 
point. It is called a “saddle point”. 

 
 

3.6 Vector Fields 
How would you sketch the earth’s gravitational field? 

r
r

Gm
rg E ˆ)(

2

−
=  

x x+δx 
x 

y 

z(x,y) z(x+δx,y+δy) xδ
dx
dy

y
z

y
xyxz 








∂
∂

+
∂
∂

+≈ ),(  
X

xδ
y
xyxzyxδxz
∂
∂

+≈+ ),(),(

Stationary point 
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Use length of the arrow to specify strength of field. 
e.g. Sketch the field irA =)(  

 
 
e.g. Sketch jirC +=)(  

 
e.g. sketch iyrD −=)(  

  



PC 1171 - Vectors, Fields and Matrices  Semester 1 
 

25 

 

e.g. Sketch )(
2
1)( jyixrE −=  

 
 

3.7 Gradient Vector 
Typically we will want the rate of change of a function in some particular direction. (ie. not 

just 
x
f
∂
∂  etc) 

Start off in 2 dimensions. 
),( yxf . 

 
what is the rate of change of f(x,y) in the û  direction? 
We want: 

y
f

ds
df

x
f

ds
df

sδ
rfsδurf

sδds
df

j

i

u

∂
∂

=

∂
∂

=








 −+
→

=
)()ˆ(

0
lim

ˆ

 

uuu ds
dy

y
f

ds
dx

x
f

ds
df

dy
y
fdx

x
fdf

ˆˆˆ ∂
∂

+
∂
∂

=

∂
∂

+
∂
∂

=

 

 
 
 

û  

ds
dx i 

ds
dy j

Patch of the 
surface 

f(x,y) û  

uds ˆ  

dxi 

dyj 



PC 1171 - Vectors, Fields and Matrices  Semester 1 
 

26 

j
ds
dyi

ds
dxu

uu ˆˆ
ˆ +=  

So u
y
fj

x
fi

ds
df

u

ˆ.
ˆ









∂
∂

+
∂
∂

=  









∂
∂

+
∂
∂

y
fj

x
fi  is the gradient vector. 

k
z
fj

y
fi

x
fzyxf

j
y
fi

x
fyxf

∂
∂

∂
∂

+
∂
∂

=∇

∂
∂

+
∂
∂

=∇

),,(

),(
 

Directional derivative can be written as uf
ds
df

u

ˆ.
ˆ

∇=  = slope of the function f in the 

direction û . 

 
Hence f∇  points in the “steepest uphill direction” and f∇  is the slope in that direction. 
It is also easy to show that f∇  evaluated at some point is perpendicular to the contour 
lines f(r)=constant at that point. 
Proof:  

 
e.g. f(r)=x+y 
Sketch the field lines of f∇  and the contours of constant f. x+y=C  y=C-x 

 

f∇  

θ 

û  

θfuf cos||ˆ. ∇=∇

f(r)=const. 

0ˆ. =∇ uf  

f∇  

û  
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jif

j
y
fi

x
ff

ˆˆ

ˆˆ

+=∇

∂
∂

+
∂
∂

=∇
 

 

e.g. Find the gradient vector of the scalar field ( ) 




=+= 222

2
1

2
1)( ryxrg  

Sketch g∇ and the contour lines. 

r

jyixf

j
y
gi

x
gf

=

+=∇

∂
∂

+
∂
∂

=∇

ˆˆ

ˆˆ

 

 
 
Summarize properties of f∇ : 

− Slope in direction û  is uf
ds
df

u

ˆ.
ˆ

∇=  

− f∇  points steepest uphill 
− f∇  slope in steepest uphill direction. 
− f∇  is normal to surfaces of constant f. 
NB: All these statements refer to a particular point in space. 

k
z
fj

y
fi

x
ff ˆˆˆ

∂
∂

+
∂
∂

+
∂
∂

=∇  

 
Potential energy is a scalar function U(r) 
e.g. uniform gravitational field U(r)=mgz 
Feel the effect of the gravitational field as a force F. 
F=-mg k̂  
In general: )()( rUrF ∇−=  

In this case kmgk
z
Uj

y
Ui

x
UF ˆˆˆˆ −=

∂
∂

−
∂
∂

−
∂
∂

−=  

 
e.g. The PE of a particle at some point r is: 

r
αrU −

=)(  

What is the force acting on this particle at point r? 

r
x

r
α

x
r

dr
dU

x
U

k
z
Uj

y
Ui

x
UUF

2

ˆˆˆ

=
∂
∂

=
∂
∂

∂
∂

−
∂
∂

−
∂
∂

−=∇−=
 

Similarly for 
y
U
∂
∂  and 

z
U
∂
∂ . 
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r
r
αr

r
αF

kzjyix
r
αF

k
r

xαj
r
xαi

r
xαF

ˆ

)ˆˆˆ(

ˆˆˆ

23

3

333

−=−=

++−=

−−−=∴

 

This is the 3D generalization of Coulomb’s Law: 
r
1  potential  

2
1

r
 via UF ∇−=  

 
Exercise: 

Find the gradient of zyxru −−= 23)(  
kjiu −−=∇ 23  

 
 
3.8 Changing variables 

e.g. Supposing you are given a function ),( yxf  and decide that you want to work in Polar 
coordinates (rather than Cartesian)  
i.e. 

 

θry
θrx

sin
cos

=
=

 

Might want (e.g.) 

θr
f








∂
∂  

Can get it by substituting back or can use chain rule as before. 
Chain rule tells us that: 

 
θxθyθ r

y
y
f

r
x

x
f

r
f









∂
∂









∂
∂

+







∂
∂









∂
∂

=







∂
∂  

Can calculate 
x
f
∂
∂  and 

y
f

∂
∂  directly from f(x,y) 

θ
r
y

θ
r
x

θ

θ

sin

cos

=







∂
∂

=







∂
∂

 

May also need (for other derivatives e.g. 
θ
f

∂
∂ ) 

θr
θ
y

θr
θ
x

r

r

cos

sin

=







∂
∂

−=







∂
∂

 

 

θ

r
(x,y) 
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Could go “the other way”, i.e. from a function of (r,θ). Then we might need 
yx

r








∂
∂ , 

yx
θ








∂
∂ , 

xy
r








∂
∂ , 

xy
θ








∂
∂ . 

 

x
θ

θ
g

x
r

r
g

x
g

∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂  

 

θry
θrx

sin
cos

=
=

 

 
Let’s evaluate them. 

yx
r








∂
∂  Need to write r(x,y) 

 

( )
( )

( )
r
yyyx

y
r

r
xxyx

x
r

yxr

x

y

=+=







∂
∂

=+=







∂
∂

+=

2
2
1

2
2
1

2
122

2
122

2
122

 

=







∂
∂

yx
θ  

Need 









=

y
xyxθ arctan),(  

2
arctan

r
y

y
x

xx
θ

y

−
=
















∂
∂

=







∂
∂  

Note: 

θ

y
r
xx

r









∂
∂

≠







∂
∂ 1  

Because different variables are being held fixed. 

y

y
r
xx

r









∂
∂

=







∂
∂ 1  

e.g. f(x,y)=xy 

Evaluate 
θ
f

∂
∂  (Implied that r is fixed). 

( )θθrθrθr
θ
f

θxrθyr
θ
f

θ
y

y
f

θ
x

x
f

θ
f

2222222 sincoscossin

cossin

−=+−=
∂
∂

+=
∂
∂

∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

 

θry
θrx

sin
cos

=
=
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check by substitution. 

( )θθr
θ
f

θθrxyf

222

2

sincos

cossin

−=
∂
∂

==
 

 
How do we compute the gradient in polar coordinates? 

 
Given g(r,θ), what is g∇ ? 

θ
θ
gr

r
gg ˆˆ

∂
∂

+
∂
∂

=∇  Tempting, but wrong. 

To derive it properly we’ll consider the directional derivative
uds

dgug
ˆ

ˆ. =∇ . 

We know that θBrAg ˆˆ +=∇ . Goal is to figure out A and B. 

 

θ
ds
θdrr

ds
dru

θθrdrdrdsu

ˆˆˆ

ˆˆ

+=∴

+=
 

So 

uds
dgug

ˆ
ˆ. =∇  

LHS is 
ds
θdBr

ds
drA +  

But we can use the chain rule to simplify RHS. 

θ
gB

dr
gA

ds
θdBr

ds
drA

ds
θd

θ
g

ds
dr

dr
g

ds
dg

θd
θ
gdr

dr
gdg

∂
∂

=
∂

=∴

+=
∂
∂

+
∂

=∴

∂
∂

+
∂

=

,

 

Hence  

θ
θ
g

r
r

r
gg ˆ1ˆ

∂
∂

+
∂
∂

=∇  

 
e.g. rr ˆ=∇  from above. 

r̂
θ̂  

θ 

r

dsû  
rdθ 

dr 

r 
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( ) 







==++=+++

∂
∂

=∇=
∂
∂

+
∂
∂

+
∂
∂ r

r
rk

r
zj

r
yi

r
xizyx

x
rk

z
rj

y
ri

x
r ˆ...222  

 

e.g. Coulomb’s law 
r
αU −= , α  constant. 

r
r
αr

r
uUF ˆˆ

2
−=

∂
∂

=∇−=  

 
 
3.9 Line Integrals 

How do you calculate the length of a curve in 3 dimensions? 

 

Length of curve from A to B ∫∫∑ ==
→

=
C

B

A
bitsall

dldllδ
lδ .0
lim

 

(C denotes the curve from A to B) 

( ) ( ) ( )
22

222 1 






+






+=++=
dx
dz

dx
dydxdzdydxdl  

So length ∫ 






+






+= B

A

x

x dx
dz

dx
dydx

22

1  

 

e.g. Calculate the length of the curve defined by ( )
0

cosh
=

=
z

xxy  as x varies from 0 to 

b.  

Length [ ] bxxdxxdx bbb
sinhsinhcoshsinh1 000

2 ===+= ∫∫  

 
Curve may be defined parametrically, i.e. ( ) ( ) ( )szzsyysxx === ,,  (eg. s could be time) 

z 

y 

x 

A 
B 

kdzjdyidxld ++=

coshx y 

x 
b 0 
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∫∫ 






+






+






=

++=

B

A

s

sC ds
dz

ds
dy

ds
dxdsdl

dzdydxdl
222

222

 

 
Example: Calculate the mass of a circular hoop of radius a whose mass per unit length 

( ) θθp =  

 
( ) ( )

( ) horrible
dx
dyθρdxρdl

dydxdl

=






+=

+=

∫∫
2

22

1
 

ρdl  = mass of element 
 

( )

aadaaaddl

a
d
dya

d
dxax

d
dy

d
dxddl

2
2

0

22

0

2

0
2222

22

2
2
1cossin.

cos,sin,cos

πθθθθθθθρ

θ
θ

θ
θ

θ

θθ
θθρρ

π
ππ

=




==+=

=−=∴=








+






=

∫∫∫

∫∫

 

 

( ) aπθθadθdlpMass

θaddl
π 22

0
2===∴

=

∫ ∫
 

 
3.10 Line Integrals Involving vector fields 

Example: Write down a formula for the work done by a force ( )rF  which acts on a 
particle that moves from A to B along some curve. 

 
dW = work done by F as particle moves from r to r+dr. 

Total work done by ∫=
B

A
dWF  

rdFdW .=  

Therefore Total Work ∫=
B

A
rdF.  

Small 
piece, dl 

θ 

dθ 

A 

B 
F(r) 

r 

0 

dr 
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Example: What is the work done by rkF −=  in going from (0,0) to (1,1) 

a) along the curve 3xy =  

( )( )

( ) kydyxdxkydyxdxkW

jdyidxrd

jyixr

jdyidxrkW

−=




 +−=+−=

+=

+=

+−=

∫∫∫

∫

1

0

1

0

.

 

Alternative way is to write everything in terms of either x or y. 
Since y=x3: 

( )( )
( )

( ) ( ) kdxxxkdxxxdxkW

dxxxd

xdxxdxkdW

−=+−=+−=

=

+−=

∫∫

∫∫

1

0
55

23

33

33

3  

b) along the path shown in the figure. 

 
( )∫ +−= ydyxdxkW  

How do we handle the limits? 
Need to consider each of the 3 parts of the path separately. 
i.e. DACDAC WWWW ++=  

( )∫ +−= ydyxdxkWAC  

ydy=0 since y=0 

kxdxkWAC 2
2

0
−=−= ∫  

 

( )∫ +−= ydyxdxkWCD  

x=2, therefore dx=0 

kydykWCD 2
11

0
−=−= ∫  

 

( )∫ +−= ydyxdxkWDB  

y=1, therefore dy=0 

[ ] kkxkxdxkWDB 2
341

22
1 1

2

21

2
=−

−
=




−=−= ∫  

So W=-k as before…. 
 

y 

1 

1 2 
x 

A C 

D 

B 
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Example: Calculate the integral ∫
C

ldB  where C is a circle of radius a centred on the 

origin and ( )
2
,

r
xyβB −

=  (β = constant) 

 

( )
( )

πβθdβldB

θdβθd
r
βaθdθaθa

r
βldB

θdjθiθaθθadld

θdθady
θdθadx

θay
θax

C

π
2

cossin

cossinˆ
cos
sin

sin
cos

2

0

2

2
2222

2

==

==+=

+−==

=
−=

=
=

∫ ∫

 

Quick way: 

πβθdβldB

r
θr

βB

π
2

ˆ

2

0

2

==

=

∫
 

c 
y 

x 

dl 
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4. Matrices 
4.1 Introduction 

We already met matrices. 
Example: linear equations 

mixay
n

j
jiji ,..,3,2,1,

1
== ∑

=
 

[ ]...,... 1221 etcxaxaxay nnIIII +++=  
Can be written xAy =  where 



















=

mnmm

n

n

aaa

aaa
aaa

A

...

...

...

21

22221

11211

MMMM
 

(An ( )mxn  matrix) 
Matrices are used 

1. In quantum mechanics 
2. To describe symmetry 

Matrix algebra is like vector algebra for addition and subtraction. 
i.e. ijijij bacCBA +=∴=+ ,  

e.g. 







=








+








26
32

14
31

12
01

 

 
4.2 Matrix Multiplication 

As an example, suppose 
( ) ( )( )np yyyyyxxxxxxBy ,...,,,,,...,,,, 321321 ===  

So B is an nxp matrix 
and ( )( )mzzzzzyAz ,...,,,, 321==  
A is a mxn matrix. 
What is C in xCz = ? 

BAC

xBA

yAz

=∴

=

=

 

But what does it mean? 
In components 

∑∑
==

=
p

j
jkj

n

k
iki xbaz

11
 

k

p

j
jkj yxb =∑

=1
 









= ∑

=

n

k
kiki yaz

1
 

So kj

n

k
ikij baC ∑

=
=

1
 

Let’s write C  out explicitly. 

1131132112111111 ... nnbabababaC ++++=  

2132132212121112 ... nnbabababaC ++++=  

( )113113211211112221

1211

2221

1211

...
...
...
...

...

...

...

nnbababababb
bb

aa
aa

++++=
































MMMM
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The cell in C is the row in A times the column in B where the row and column meet at the 
cell in C. 
NB: Multiplication only defined if the number of rows in B is equal to the number of 
columns in A. 
 
e.g.: 

BA
xxxx

xxxx
AB

xxxx
xxxx

BA

B

A

≠







=








−+
−+

=









−

=







−−
++

=









=









−

=

211
05

14232413
21212211

01
107

41223112
42213211

43
21

12
21

 

Multiplication is: 
non-commutative 
associative: ( ) ( )CBACBA =  

Distributive: ( ) CABACBA +=+  
 
e.g. which matrix acts on a vector to give the same vector? 
















=

































3

2

1

3

2

1

100
010
001

x
x
x

x
x
x

 

This is the unit matrix 1=ijδ  (1 is a stylised 1) 

( )ji
ji

≠=
==

.01
).(11
 

 
e.g. useful in quantum mechanics is the commutator  of two matrices, A  and B  

[ ]BAABBA ,=−  
 
4.3 Transpose 

Transpose is defined to be the matrix which is obtained by swapping rows and columns. 
e.g. 
















=









=

63
52
41

654
321

TA

A

 

In component notation: 

ji
T
ij AA =  

 
e.g. transpose of a “column vector” is a “row vector”. 

( )21

2

1

xxx

x
x

x

T =









=

 

Note 2
2

2
1 xxxxT +=  

yxT  is a way of taking the vector product 
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( ) 2211
2

1
21 yxyx

y
y

xx +=







 

[What is Tyx ?] 

( ) 







=









2212

2111
21

2

1

yxyx
yxyx

yy
x
x

 - Tenser product 

 
If BAC =  

( ) TTTT ABBAC ==  
 
Proof: 

( )
( ) ( ) T

kj
T
ik

T
ik

T
kjkijk

T
kjikij

T

TT

ABBABABAC

BAC

====

=
 

[If indices are repeated then summation implied] 
 

4.4 Inverse 
We have met yxA = . 
Let us introduce the matrix 

1−A  such that 11 =− AA  

yAx

yAxAA
1

11

−

−−

=

=
 

Note 
1−A  does NOT always exist. 

 
How do we find 1−A ? 
We use the result  

( ) ik

n

j
kjij ACa δdet

1
=∑

=

 

C is the co-factor (kjth) of A  
Proof: 

Consider i=k, 1=ikδ  

∑
=

=
n

j
ijij ACa

1
det   definition of determinant. 

A
aaa
aaa
aaa

det

333231

232221

131211

=  

For any i 

3332

2322
11 aa

aa
C =  

3331

2321
12 aa

aa
C −=  etc 

i.e. just the definition of Adet  

Now consider  i≠k, 0=ikδ  

0
1

=∑
=

n

j
kjijCa  

LHS is just the determinant of a matrix with 2 equivalent rows which we earlier saw to 
be zero. 
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e.g. if i=1, k=2. (n=3 case) 
















=

=++

333231

232221

131211

333231

131211

131211

231322122111

aaa
aaa
aaa

A

aaa
aaa
aaa

CaCaCa

 

Hence: 

( )

( )1det

det
1

ACA

ACa

T

ik

n

j

T
jkij

=

=∑
=

δ
 

( )

A

C
A

A

C
A

AA

T

T

det

1
det

1

1

1

=

=














=

−

−

 

 
Inverse = “transpose of the matrix of cofactors (divided by the determinant)” 
NB: Inverse does not exist if 0det =A  “singular matrix”. 
 
Example: Find the inverse of 









=

43
21

A  















−

−
==

−=−=









−

−
=









−

−
=

−

2
1

2
3

12

det

264det
13
24

12
34

1

A

C
A

A

C

C

T

T

 

Check: 









=

















−+−

−+−
=













−

−








10
01

2
43

2
346

2
12132

2
1

2
3

12

43
21

x

x
 

















−−
−

−
=

=

















−
=

316
534
152

14det

112
201
131

C

A

A
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−
−−

−
=−

351
135

642

14
11A  

 
4.5 Special Matrices 

Symmetric: 
Has to be symmetric about the diagonal. 

jiij AA =  
TAA =  

( )( )symboldaggerT AAA .* ==  

A  is hermitian. symboldaggerA .  is the hermitian conjugate. 
Orthogonal: 

1−= AAT  

i.e. 1=TAA  









− θθ

θθ
cossin
sincos

 is orthogonal. 

e.g. vvvvv T .2 ==  

( )

vRv

vvv
v
v
v

vvv

=

++=
















'

2
3

2
2

2
1

3

2

1

321  

(Orthogonal matrix) 
( ) ( ) vvvRRvvRvRvvvv TTTTT ==== ''''.  

 Length of v is invariant under an orthogonal transformation. 
If 1=AAdagger  

A  is unitary.  
 

4.6 Eigenvalues and Eigenvectors 
Back to system of masses and strings to look at dynamics. 
 

 
 
Recall 

( ) 211211 2 kxkxxxkkxF +−=−+−=  
( ) 212212 2kxkxkxxxkF −=−−=  

i.e.: 

















−

−
=









2

1

2

1

2
2

x
x

kk
kk

F
F

 

by Newton’s 2nd law 









=









2

1

2

1

x
x

m
F
F

&&

&&
 

x1 x2 

k k k
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Generally motion is complicated. But we can look for solutions of definite frequency 
(“normal modes”). 
Try to find solutions of the form ( ) ( ) tXtxtXtx ωω cos,cos 2211 ==  (X1, X2 constants) 









=
















−

−












−
−

=















−

−

2

12

2

1

2
2

2
1

2

1

2
2

cos
cos

cos
cos

2
2

X
X

m
X
X

kk
kk

tX
tXm

tX
tX

kk
kk

ω

ωω
ωω

ω
ω

 

Can write as: 
XmXK 2ω=  









−

−
=









=

kk
kk

K

X
X

X

2
2

2

1

 

This is an EIGENVALUE equation. 
X is the eigenvector, while mω2 is the eigenvalue. 
Let’s solve the general case. 

xxA λ=  
where λ is a number. 
( ) 01 =− xA λ  
Homogenous linear equation. 
For interesting (not unique) solutions we require ( )1det λ−A   Gives us the eigenvalues, 

λ1, λ2, λ3, ..., λN, (if A is a NxN matrix) 

( ) 01det ≠− λA  leads to unique but trivial solution x=0. 
For each eigenvalue λi we need the corresponding vector Xi. i.e. we must solve 
( ) 0=− ii XA λ  

iX  is called an EIGENVECTOR. Note: since RHS iX  is defined only up to an overall 
factor. 

e.g.: 







−

−
=

21
16

A  - find the eigenvalues and eigenvectors of A . 

To get eigenvalues we must solve ( ) 01det =− λA . i.e. 0
21

16
=








−−
−−
λ

λ
 

( )( )
54

0126

±=

=−−−

λ

λλ
 

Eigenvalues are 54,54 21 +=−= λλ . 
Check: “sum of eigenvalues = trace of matrix” 
Add the λ up, and check that they equal to the diagonal elements of the matrix (i.e. 6+2 in 
A . 

To get eigenvector corresponding to λ1, ( ) 01 11 =− XA λ  

( )0
1

0
0

21
16

1

1

1

≠







=








=









=
















−−
−−

b
ba

b
b
a

X

b
a

λ
λ

 









=



















+−−
−+

0
0

521
152

b
a

 

Using the first equation: 
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( )

( ) 







+

=

=−+

a
a

X

ba

52

052

1

 

a can be anything i.e. norm of X1 is not fixed. 









+

=
52

1
1X  

Note, could get X1 from the 2nd equation i.e. ( ) 052 =+−+− ba  - it givees the same 
answer. 

For λ2 







=



















−−−
−−=
















−−
−−

0
0

511
152

21
16

2

2

d
c

d
c

λ
λ

 

Hence ( ) ( )






−

=⇒=−−
52

052 2 c
c

Xdc  

Can check: 
Substitute back in: 

( ) 







+

−=










+
−=








+








−

−

=

52
1

54
522
54

52
1

21
16

111 xxA λ

 

 
e.g. calculate the eigenvalues and eigenvectors of: 
















=

100
023
032

B  

Want xxB λ= , i.e. ( ) 01 =− xB λ . 
To get λ: 

( ) ( )[ ]( ) 01921
23

32
0

100
023
032

2 =−−−=−
−

−
==

−
−

−
λλλ

λ
λ

λ
λ

λ
 

Solutions: 
5,1±=λ   Eigenvalues. 

Check works. (5=5) 
To get eigenvectors: 

11 −=λ  
( )
















=

































=−

0
0
0

200
033
033

01 11

c
b
a

XB λ

 

Let 















=

c
b
a

X 1  

Therefore ba −=  and 0=c  
S: 
















−=
0

1 a
a

X  

Unit eigenvectors: 
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1ˆ

0
21

21

0
1

1

2
1ˆ

11

1

=

















−=















−=

XX

X

T

 

 
11 =λ  

( )
















=

































=−

0
0
0

000
013
031

01 11

c
b
a

XB λ

 

00
03
03

=
=+
=+

ba
ba

 

 C can be anything! 
0== ba  
















=

C
X 0

0

2  
















=

1
0
0

ˆ
2X  

 
51 =λ  

( )
















=

































−
−

−

=−

0
0
0

400
033
033

01 11

c
b
a

XB λ

 

0

04
033

033

=
=

=−
=−
=+−

c
ba

c
ba

ba

 
















=

0
3 a

a
X  
















=

0
1
1

2
1ˆ

3X  

 
So: 
















−=
0
1

1

2
1ˆ

1X















=

1
0
0

ˆ
2X
















=

0
1
1

2
1ˆ

3X  

These are all orthogonal. 
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4.7 Real Symmetric Matrices 
Note that for both A  and B  in the previous exams  
(a) Eigenvalues were REAL. 

(b) Eigenvectors were ORTHOGONAL (e.g. 0ˆ
21 =XX

T
 

 
(a) and (b) occurred because A  and B  are real (i.e. *AA = ) and symmetric (i.e. 

TAA = ) 
(a) and (b) hold for all real and symmetric matrices. 
 

4.8 Normal Modes 
We can now finish off solving the coupled springs problem. 
We had: 

XmXK 2ω=  









==

2

1,cos
x
x

xtXx ω  

 









−

−
=

kk
kk

K
2

2
 

 to get eigenvalues 

( )

m
kmk

m
kmk

kk

m

kk
kk

33,

02

0
2

2

2
2

22

1
2

11

22

2

=⇒==

=⇒==

=−−

=

=
−−

−−

ωωλ

ωωλ

λ

ωλ

λ
λ

 

These are the angular frequencies of the normal modes. 
The corresponding eigenvectors are: 

212

211

1
1

2
1

1
1

2
1

xxX

xxX

−=→







−

=

=→







=

 

1x  corresponds to the masses moving in phase. 

2x  corresponds to the masses moving in antiphase. 

x1 x2 

k k k


