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1. Defining Space, Time and Motion 
1.1 Definitions & Coordinate Systems 

What is space? 
• 3-Dimensional, soft or like a grid 
• Particles can have different positions in space at the same time 
• “Distances are measured by rulers” 

 
What is Time? 

• Something which flows (?) 
• 4th Dimension 
• Newton used the word ‘equable’ – equal and uniform 

(We will show later that time intervals are not the same for everybody – it 
depends on the state of motion of the observer) 

• For now, “Time intervals are measured by clocks) 
 
What is Motion? 

• A change in position with time 
 
If we have a collection of objects e.g. whose relative positions in space do not change 
with time, we can use them to define a ‘frame of reference’. 
Motion is always measured relative to some frame of reference, e.g. train, plane, earth, 
this room, … 
 
It will turn out that certain frames of reference are more useful than others. 
 
In a given frame of reference we are free to choose a coordinate system – the “mesh” by 
which we measure positions and displacements. For most problems motion is confined to 
a plane – can use 2D coordinate systems. The most familiar is the 2D Cartesian System. 
 
Cartesian system: 

Positions are measured using a square grid formed by 2 mutually perpendicular axis 
(x,y) which meet at 0 (0,0). 
The position P relative to O is described by the position vector r. 
r can be associated with the coordinates (x,y) 

 
 
Polar system: 

In the same frame of reference we can use Polar Coordinates (r,θ). 
Can be related to x and y. 
 

 
 
R2 = x2 + y2 
Tan θ = opp/adj = y/x 
and: 
x = r.cos θ 
y = r.sin θ 
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To describe displacement in a given coordinate system, basis vectors are used in the 2D 
Cartesian system. 
e.g. i (Direction of increasing x) 
       j (Direction of increasing y) 
 

 
In the polar coordinate system er and eθ are used. 
Important: basic vectors depend on the position in non-Cartesian systems. 
Basic vectors have unit length. 
 
r = xi + yj 
or: 
r = rer 
 
In 3D the Cartesian basis is i j k 
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Displacements in space may be described by vectors: 
 

 
s = sxi + syj 
sx = distance sx in x direction 
sy = distance sy in y direction 
 
True in flat spaces. 
 
A + B = B + A 
 
Multiply by a positive number changes the length of the vector but not its’ direction. 
Multiplication by a negative number results in a vector in the opposite direction. 
 

 
A – A = 0 (the ‘null vector’ – a vector of 0 length and no defined direction) 
 
A + B = C 
 

 
Cxi + Cyj = (Ax + Bx)i + (Ay + By)j 
Cx = Ax + Bx 
Cy = Ay + By 

 
Scalar product of two vectors (Dot product) 
 

 
A.B = |A| |B| cosθ 
 
|A| is magnitude (length) of vector A 
|B| is magnitude (length) of vector B 
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Can be written in terms of components in a Cartesian basis: 
A.B = AxBx + AyBy + AzBz 
Note that i.i = j.j = k.k = 1 
 

1.2 Standards for the measurement of length and time 
The metre was originally defined to be 10-7 of the distance from the pole to the equator. 
This was not precise enough (Late 18th Century) 
Defined as the length of a particular metal bar (Sévres) 
1960 – defined as a multiple of orange/red lines in 86Kr 
1983 – c was defined to be 299,792,458 ms-1 

 define the second, define the metre. 
 
Definition of a second: 1/86,400 of a mean day. 

 Variations due to changes in the Earth’s speed and distance from the sun meant this 
was no good. 
In 1967, Cs Atomic Clock introduced. 
1s = 9,192,631,770 cycles of vibration in 133Cs 
Gains/Looses 0.1ns in one day. 
 

1.3 Velocity and Acceleration 
Consider an object in motion. 
Position vector is a function of time r(t) 
 

 
Consider a slightly later time r(t + ∆t) 

 
r(t) + ∆r = r(t + ∆t) 
 

 
Consider shorter and shorter intervals of time. 
∆r/ ∆t approaches a limit. 
 
V(t) = lim(∆t 0) (∆r/∆t) = dr/dt 
 
For motion in 1D we can plot a space-time graph. 
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On this graph, v = ds/dt = gradient 
 
In problems with 2 objects in motion it is often convenient to use a relative velocity. 

 
As r1 and r2 move, R will change. 
 
R = r1 - r1 
So dR/dt = (dr2/dt) - (dr1/dt) 
Or V = v1 - v1 
 
The relative velocity is often useful to solve collision problems, for example two 
aeroplanes which are travelling at different velocities crossing paths. It is possible to use 
vector diagrams to confirm that these will not collide. 
 
Acceleration: 
Definition: a = dv / dt = lim(∆t 0) (v(t + ∆t) – v(t))/ ∆t 
 
So a = d2r(t) / dt2 
Higher order derivations of r(t) are not so important => equations of motion will turn out to 
be second order. 

 
1.4 Simple kinematics in 1D 

 
Suppose that the acceleration a(t) is known. 
To get v(t) we integrate a(t) 
 

∫ +=−
t

ovdttatvtv
012 )()()(  

 
We can do a similar thing to get s(t) 

∫ +=
t

sdttvts
0 0)()(  

 
If a(t) = 0 we get v(t) = vo and s(t) = vot + so 
 
If a(t) = a = constant 
 
Then v(t) = at + vo –(1) 
   s(t) = ½ at2 + vot + so –(2) 

t

s 
s(t) 

v is the tangent 
to the curve 

R 
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Square (1) and substitute into (2) 

 v2 = vo
2 + 2a(s-so) 



PC 1101 – Space, Time and Motion  Semester 1 

7 

2. Newton’s Laws of Motion 
2.1 Newton’s Laws 

What is a force? 
Something which pushes or pulls 
 

What type of quantity is it? 
A vector (Magnitude and direction) 

 
Forces were known long before Newton. 
A body is said to be in static equilibrium if the sum of the forces is null. 
i.e. ∑ ==++

i
iFFF 0...21  

 
i.e. in static equilibrium a closed polygon is formed by the vectors. 
F1x+F2x+F3x+…=0 
F1y+F2y+F3y+…=0 
F1z+F2z+F3z+…=0 
 
What types of forces are there? 

Contact forces between two bodies 
Elastic forces F=-k(x-x0) 

Electrostatic forces 
2

120

21
12

4 rπε

QQ
F =  

Frictional forces F=nN where n=coefficient and N=Normal Force. 
etc… 

 
Newton 1 

The Greeks thought that a force was needed in order to keep an object moving. 
In order to see the motion of an object with no applied force you have to try hard to 
overcome friction The linear air track has a layer of air with viscosity ~1/5000 of a layer 
of oil. 
With no net force an object either 

1. Remains at rest 
2. Remains in a state of constant velocity 

With an applied force the object accelerates. 
It is always possible to find a coordinate system in which an isolated body moves 
uniformly i.e. with constant velocity. Such a coordinate system is known as “inertial”. 
Note that it is always possible to choose a non-inertial coordinate system. 
 

Circular Motion 
This type of motion is best handled in polar coordinates. 
Position vector n=rer 
Recall that er depends on the position of the object and may change with time. 

F1 

F2 

F3 
F1
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|∆r|=r∆θ as ∆θ 0 
θeθrr ∆=∆  

so θeωr
t
r

t =
∆
∆

∆ )0lim( >  where 
dt
θdω =  

So θeωrv =  –(1) 
|v|=rω 

 
Take the case where r=1 

θr eωe
dt
d

=  –(2) 

 
By similar argument 

rθ eωe
dt
d

−=  –(3) 

 
(2) and (3) are important when working in polar coordinates. 
 
(1)  

( )
( )r

θ

eωωra

eωr
dt
da

−=

=
 

r  constant because this is circular motion 
ω  constant (Uniform circular motion) 

reωra 2−=  using (3) 
 

1) The force providing this acceleration is the contact force between the bearing and 
the ring (in the demo) 

2) As soon as that force is removed, the velocity is constant and in a tangent to the 
circle. 

 
Newton Continued 

1st law: mentions the “isolated object”. It is difficult to imaging how you identify such 
an object. e.g. if you see your isolated system accelerating, is this due to some force 
or are we in a non-inertial frame of reference? 
 

r(t+∆t) 

r(t) 

|∆r|=r∆θ

θ 
er(t) 

∆er er(t+∆t) 

eθ(t+∆t) 

eθ(t) 
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With the Air Track we can apply a force using a stretched spring (constant extension, 
i.e. constant force) 

 
If we use the same mass with two additional isolated springs then we get 2a0. 
One spring, double the mass = 0.5a0, etc… 
Experiments like these would lead us two Newton’s 2nd law of motion. 

ma
dt
dvmF ==  

(1) amF =  Newton’s 2nd law 
F is the net force on the body, i.e. ∑=

i
iFF  

e.g if we are in static equilibrium 
0=∑ iF  therefore a=0 

We can use (1) to define a mass scale. 
Apply same force to objects of different mass: 

3

1

1

3

2

1

1

2

a
a

M
M

a
a

M
M

=

=

 

etc… 
 
A definition of mass in terms of how a body accelerates  inertial mass. 
This mass scale is tied to a standard kilogram (Pt/Ir alloy kept at Sévres, France) 
The unit of Force, the Newton, is defined as the force which imparts an acceleration 
of 1ms-2 to a mass of 1kg. 
So 1N=1kgms-2. 

 
Newton III 

Forces come in pairs. 
All forces are the result of some mutual interaction. 
“If I push on the table, the table pushes back on me”. Recall the “Isolated system”. 
 
To be a real force there must be another object subject to an equal and opposite 
force. 
Newton III: “If a body A exerts a force on body B (action) then B exerts a force on A 
(reaction) such that action FAB = reaction FBA.” 

FAB=-FBA 
 
2.2 Applications of Newton’s Laws 

Free-Body Diagrams 
First step to solving a dynamics problem, e.g. a book at rest on a table. 

 
Static equilibrium. 

V 

θ 
t 

a0=dv/dt

mg 

N 
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e.g. an object falling 

 
Rules for drawing these diagrams: 
1. All forces act on a point that represents the object (Later: centre of mass) 
2. Only draw forces on diagrams. Draw any acceleration next to the force diagram. 
3. Do not draw any other objects on the same diagram. Draw separate diagrams for 

each object. No ropes, surfaces, … 
4. Include directions of coordinate systems 

 
Usual practice to put a wiggly line through the force that has been resolved into 
components. 

5. Usual to label an object’s weight as mg. 
Example: a conical pendulum: 

 
Forces: tension in string, weight. 
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The Astronaut’s Tug of War 
Two astronauts are at rest in free space. They pull on either end of a rope of mass Mr. 
(A) pulls with a force Fa and has a mass of Ma 
(B) pulls with a force Fb and has a mass of Ma 
Find the motion of these two astronauts. 
FB diagrams: 

 
Newton’s 3rd law 

 FA’=FA and FB’=FB 
EOM (Equation of Motion) for the rope: 
FB-FA=Mrar 
Ignore the mass of the rope 

 FA=FB 
Either applies the same force to the rope. 
 

EOM for (A) 
A

A
A M

F
a =  

EOM for (B) 
B

B

B

B
B M

F
M
F

a −=−=  

Note the negative sign. 
 

The Train 

 
Three trucks each of mass m are pulled by an engine providing force F. 
Constraints: x2-x1=const. etc…  a1=a2=a3=a 
FB diagram for the whole system: 

 
Static equilibrium in y direction N=3mg 
x-direction EOM 

F-3ma or 
m
Fa

3
=  

 

MA Mr MB 

FA’ FA FB’ FB 

aA ar aB 

x 

1 2 3 F 

x1 
x2 

x3 

N 

F 

3mg 

a 
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x 
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FB diagram for truck (1) 

 

312
FmaF ==  

 
FB diagram for truck (2) 

 

3
2

3323

1223

FFFF

maFF

−+=

=−
 

So net force on truck 2 
31223
FFF =−  

 
Pulley 

 
y1+y2=const. 
Equation of constraint: 

2

2

dt
ydy

dt
dyy

≡

≡

&&

&

 

Equation of constant  21 yy &&&& −=  
FB Diagram: 

 
EOM: 1111 aMTgM =−  (1) 122212 aMaMTgM −==−  (2) 

a 

N/3 

F12 

mg 

a F23 F12 
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(1)-(2) 
( ) ( )

( )
( ) g

MM
MM

a

aMMgMM

21

21
1

12121

+
−

=

+=−
 

If M1=M2, a=0 (OK) 
If M2=0, a1=g (OK) 
 
(1)+(2) 
( ) ( )

( ) ( )[ ]12111

121121

2
1

2

agMagMT

aMMTgMM

++−=

−=−+
 

 
FB diagram for pulley: 

 
T2=2T1 
If a1=0 (M1=M2) then: 

( )
( )gMMT

gMMT

212

211 2
1

+=

+=
 

Seems OK. 
 

 
All surfaces are frictionless 
The angle of the wedge is θ. 

 
( ) θyhXx cot−=−  (1) equation of constraint. 

θyXx cot&&&&&& −=−  (2) 

T2 

T1 T1 
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Note that working in coordinate system fixed to the wedge would be incorrect  a 
non-inertial frame of reference. 

Problems involving plane polar coordinates 
Recall: 

rrθ
θ

θθr
r

eθeωe
dt
ed

eθeωe
dt
ed

&&&

&&&

===

===
 

Then with rerr =  

( ) rrr ererer
dt
dv && +==  

 
rr ererv && +=  

 

θθθrr eθrereθrerer
dt
vd

a &&&&&&&&&& ++++==  

 
( ) ( ) θr eθrθreθrra &&&&&&& ++−= 22  

 
e.g. block on a strong (horizontal plane) 
Ignore gravity 
Circular path radius R 
Constant angular velocity θω &≡  

So 0=== θrr &&&&&  

reθra 2&−=  
 

ω
r
vθ ==&  

 

R
ev

a r
2−

=  

 
FB diagram 

 

R
mvT

2
=  

 
Block on a string in the vertical plane with gravity: 
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T re
R
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2−
=
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Tension in strong T(t)>0 
Find T 
FB diagram: 

 
Constraints? Rrrr === ,0&&&  

θr eθreθra &&& +−= 2  
 
Radial EOM: 

θmgθmRT

θmrθmgT

sin

sin
2

2

−=−

−=−−
&

 

Tangential direction ( )θe  

θmgθmR

T
R

θgθ

θmrθmg

sin

0

cos
cos

2 >∴

>

−
=

=−

&

&&

&&

 

Max value of sinθ=1 

So 
R
gθ >&  or string will go slack. 

 
2.3 Momentum 

We express the second law in the form: 
amF =  (1) 

This is not the original form of the law. 

dt
Pd

F =  (2) 

where vmP =  
 
If you have a particle with constant mass 

( ) amvm
dt
dF ==  

 (1) and (2) are the same. 
 
For complex systems the 2nd form (2) is more useful – can be used in situations where 
the mass is not constant. 
Consider a system of interacting particles. 
e.g. sun & planets. 
e.g. an object comprised of atoms. 

Suppose N particles with masses M1,M2, …, Mn. 
Position of the jth particle by rj. 
Force on the jth particle by Fj 
 

θ 

T 

eθ 

er 

θmg cos

θmg sin
mg 

x
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Fj can be split into internal forces and a force due to interactions with objects outside 
the system. 

∑
=

+=
n

k
jk

e
jj FFF

1

)(  

jkF  is the force on particle j due to k. 
For each particle we have 

jj P
dt
dF =  

We have n such equations. If we add these: 

( )nn PPP
dt
dFFF +++=+++ ...... 2121  

or 

∑∑
==

=
n

i

n

i
P

dt
dF

1
1

1
1  

If we substitute in for 1F  we get 

∑∑ ∑∑
== ==

=+
n

i
i

n

i

n

j
ij

n

i

e
i P

dt
dFF

11 11

)(  

0
1 1

=∑ ∑
= =

n

i

n

j
ijF  as all forces are paired with each other due to Newton’s 3rd jiij FF −=  

If we set 

∑
=

=
n

i

e
iFF

1

)(  Total external force 

and 

∑
=

=
n

i
iPF

1
 Momentum of system 

We get: 

P
dt
dF =  

 
Looking for an equation in the form RmF &&=  where F is the total applied force and 

∑
=

=
n

i
iMM

1
 

∑

∑

=

=

==

=

n

i
ii

n

i
ii

rM
dt
Pd

RM

rMP

1

1

&&&&

&

 

True if we define 

∑
=

=
n

i
ii rM

M
R

1

1  

Position vector of the centre of mass. 
RMF &&=  

The system behaves as though all its’ mass is concentrated at one point. 
All external forces act through this point. This tells you everything you need to know 
about what happens to the centre of mass but says nothing about the orientation in 
space of the object – see later. 

∑
=

=
n

i
ii rM

M
R

1

1  is OK for a collection of point particles – but what do we do about 

extended bodies? 
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Imagine the body divided up into N regions each of mass 
N
MMδ =  

∑
=

=
n

i
irmδ

M
R

1

1  

By definition as N ∞ 

∑ ∫
=

→
n

i
ii dmr

M
rmδ

M 1

11  

For a continuous body: 

dmr
M

R ∫=
1  

If you know the density P(r) 

∫= dvrP
M

R 1  (dv = volume element) 

This is a volume integral. 
 

Simple example: 
Centre of mass of a long, thin beam. 

 
Beam has mass M and length L 
Density (mass per unit area length)=M/L 
So: 

iLR

ix
L

R

ixdx
L
M

M
R

L

2

2
1

1

0

2

=












=






= ∫

 

 
2D problems involve density/unit area      2D integrals. 
3D problems involve density/unit volume  3D integrals. 
More complicated maths. 

 
Falling box 

Centre of mass in geometric centre of box. What forces act on the system? 

x 

y 

z 

δm 

x=0 x=L 

i 
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Neither force has a horizontal component. 
Acceleration of Com must be vertical. 
As the base tumbles the COM falls straight down. COM motion but we say nothing at 
this stage about changes of orientation. 
 

Conservation of Momentum. 

Newton II 
dt
Pd

F =  

Suppose we have an isolated system 

0,0 ==
Ndt
PdF  

Net momentum ∑
=

=
N

i
iPP

1
 is a constant. 

The total momentum is conserved. 
Note that this conservation law is applicable in quantum mechanics and relativity as 
well. 
 

Example 
Gun recoil. 

 
Muzzle velocity vo. Two components to the velocity of the cannon ball. 
 
Conservation of momentum in x-direction. 

( )( )

Mm
θmv

V

iMfvθvm

o
F

FFo

+
=

−−=

cos
cos0

 

In the y-direction there is a normal force acting on the gun. This is an external force 
so we cannot use conservation of momentum in this direction. 
 

Impulse 

)0()(
0

PtPdtF

dt
Pd

F

t
−=⇒

=

∫
 

∫
t

dtF
0

 is known as the impulse. 
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vosinθ 

vocosθ-vf 
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Example: rubber ball. 
Mass = 200g 
Velocity ~ 8ms-1 

Ball in contact with the floor for ~ 1ms = 10-3s 

 

N
t
PF

kgmsPPP

av

if

3200

2.3 1

=
∆
∆

=

=−=∆ −

 

Short time scale  large forces. 

 

∫=

−=∆

dtFpulse

ttt if

Im
 

 
Momentum and Mass flow problems 

Often we have to deal with problems that involve a flow of mass. 
 Snowball rolling downhill 
 Flow of sand 
 Rocket propulsion 

Such problems are best viewed from the point of view of momentum transfer. 
It is important to clearly define the dynamical system. 
Example: 
 

 
What value of F will keep the rocket moving at uniform v? 
 

Pi Pf 

F 

t1 t2 

Fa

v

t 

M(t) 

F 

v 

u 

Time t 
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Mass of rocket M(t)+∆M 
 
∆M is the mass added to the rocket in time ∆t. 

( )
( ) muvP

vMtMttP
uMvtMtP

∆−=∆
∆+=∆+

∆+=
)(

)()(
 

Rate of change of momentum 

( )

( )
0

0

=⇒=

=−=

→∆
∆

∆
−=

∆
∆

Fuv

F
dt
dmuv

dt
Pd
t

t
Muv

t
P

 

 
Example: Freight car + hopper 

 
 
Sand falls from a hopper onto a car moving with velocity v. What F is required? 
The change of momentum is due to the change in mass. 

F
dt
dmv

dt
Pd

==  

If you drain the sand through a hole in the car then no change of momentum takes 
place  no force needed. 

 
Problems with Rockets 

Consider a rocket ejecting fuel at an exhaust velocity u. 

 

time t+∆t 

v 

F v 

∆M M v 

System at time t: 

Time t+∆t 

∆M M v+∆v 
v+∆v+u 
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( )
( ) ( ) ( )

uMvMP
uvvMvvMttP

vMMtP

∆+∆=∆
+∆+∆+∆+=∆+

∆+=)(
 

Note that we ignore ∆m∆v. 






 −=

−=

+=

dt
dmu

dt
dM

dt
dmu

dt
vMd

dt
Pd

dt
dMu

dt
vMd

dt
Pd

 

 

dt
dmu

dt
vMd

F −=  

 
F is the external force on the system. 
 
Suppose the rocket is in free space… 

dt
dm

M
u

dt
dv

dt
dmu

dt
dvM

F

1

0

=

=

=

 

 
Suppose u is constant. Then: 

∫∫ = ff t

t

t

t
dt

dt
dM

M
udt

dt
vd

00

1  

 









=−

0
ln

M
M

uvv f
if  

 
Fixed velocity of rocket doesn’t depend on the time the fuel was burnt for. 
 

mgE −=  ? 
 
2.4 Friction and Viscosity 

What is friction? 
− Force which opposes motion 
− Static (body is stationary) & Dynamic (body is moving) 
 
The edge of matter consists of ragged edges, rather than smooth ones. As such, a very 
small fraction of the geometric areas of the objects are in contact. 
 

 

E 

N 

A 
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NµFc =  

N = normal force between the surfaces. 
µ = coefficient of static friction. 
 
When A>µN, object starts to move. Thereafter (A>µN) the frictional force is roughly 
constant. 

NµF d=  
when dµ  is slightly less than µ . 
 
Example Block and a wedge with friction. 

 
FB Diagram: 

 
Coefficient of friction µ block mass m 
At what value of θ does the block start to move? 
EOM: 

θwNjM

FθwxM

cos

sin

−=

−=
&&

&&
 

When the block begins to slide: 
0, == xNµF &&  

Just at the limit when motion starts. 
So: 

Fc 

F 

A 

F=A

~ constant 

N 
F 

θ 

θ 

w 

N 
F 

w 
~ 

wcosθ 

wsinθ 

y 

x 
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µθ
Nθw
Nµθw

m

m

m

=∴
=

=

tan
cos
sin

 

For wooden surfaces, µ~0.2-0.5 
 
Example 2: The spinning terror 

Large vertical drum that spins around its central axis  the floor is removed and the 
people inside remain fixed to the side. 

 
What value of ω is needed? 

 

Rµ
gω

ωRµg

mgF
ωmRµNµF

ωmRW

≥

≤

=
=≤

=

2

2

2

2

 

So the smallest value of ω  which will work is: 

Rµ
gω =  

Cloth on wood gives 3.0≥µ  
Take R=2m 

onds
ω
πPeriod

srad
x

ω

sec6.12

.0.4
23.0

81.9 1

==

== −

 

 
 
 
 
 
 

r 

ω 

ω 

F 

w=mg 

Radial acceleration

r
vωrar

2
2 ==
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Viscosity 
A body moving through a fluid is retarded by the force of velocity exerted on it by the 
fluid. 

 
By dragging elements of the fluid along with the body momentum is transferred to the 
fluid  force. 
Newton’s III  resistive force on body 
The viscous force is linear in v i.e. Fv=-Cv. C can be calculated for simple shapes. 
In PC1101 we will take C as a given constant. 
 
Example 

Free motion in a fluid. 
A body moves with velocity v in a fluid. There are no other forces. 
Solve the equation of motion 

dt
vd

mamF ==  

Here: 
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m
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m
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Because the exponential must have directionless argument  T
c
m

=




  

τ
c
m

=




  

τ  is the time taken for velocity to fall from o
o

o v
e

v
v 37.0≈→  
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3. Conservation of Energy 
Work done is dependant on the magnitude of the force and the distance moved. 

 
Block against a wall – no friction. 

 
 
F┴ does no work. 
FII (Component of force along the axis of displacement) does the work. 

sFθFssFW II .cos ===  
Units 1 Joule = 1Nm 

 
θFssFW cos. ==  

 
If the object is moved from A to B how do we determine the work done? 
Path is broken down into a series of small displacements. 
Total work done: 

∑
=

=
N

i
ii dsFW

1
 

So with N ∞ and ds 0 

F 

s 

θ 

F 

θ 

F┴ 

FII 

N 

s  a 

θ 

F 

s 

A 

B
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∫=
B

A
dsFW  

(Path integral of line integral) 
In the previous example the block accelerates and the final velocity will depend on the work 
done. 

22

22

2
1

2

2
1

2
1

2

2

ifII

II

if

f

mvmvsFW

maF

vv
as

asvv

−==∴

=

−
=

+=

 

Useful in problems when you are trying to determine a speed |v|. We define this as the 
kinetic energy. 

2

2
1 mvEk =  

 
kikf EEW −=  

 
Example 

 
x=0 is the equilibrium position of the spring. 
What is the work done in moving from x=0 to x=x’? 
f=-kx Hooke’s law 
k = spring constant, x = displacement from equilibrium. 

2

'

0

'
2
1

.

kxW

kxdxW

dsFW

xx

x

=

=

=

∫

∫
=

=
 

or more generally: 
2

1
2

2 2
1

2
1 kxkxW −=  

in going from x1 to x2. 
 

3.1 Work-Energy Theorem 
We have shown that in the case of uniform acceleration that 12 kkW −= . 
Consider straight line motion where F may depend on position. 

∫∫ ==

===

2

1

2

1

x

x

x

x
dx

dx
dvMvFdxW

dx
dvv

dt
dx

dx
dv

dt
dva

 

Using 
dx
dvmvmaF ==  

So: 

x=0 x’ 
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( )
( )22
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xvv
xvv

mvmvmvdvW
v

v

=
=

−== ∫
 

 
Curve can be considered as a series of small linear steps. 
For each small step we can use: 

iiii KsFW ∆=∆=∆  (Change in KE at the ith step) 

KAKB

N

i
iAB EEWW −=∆= ∑

=1
 

or more formally: 

KAKB
B

A
EEdsF −=∫  

(Line integral  see Vectors, Fields and Matrices) 
In any situation the work done is the change in kinetic energy. 
 
Power 

The power is the rate at which work is done. 

dt
dw

t
W

t
P =

∆
∆

→∆
=

0
lim

 

Units of power: 1 watt = 1Js-1 

dt
dsF

dt
dwP ==  

 
vFP =  - Instantaneous power 

 

 
In general it is difficult to see how to apply the work / energy theorem  to evaluate W 
you need to know the path the system takes from a  b. Now always! If F is conservative 
then W depends only on a and b, but not the details of the path. 

B 

A 

y 

x 

A 

B 
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If you have friction then the force is non-conservative. The larger path involves more 
work. 
The Work-Energy theorem is also useful in cases of conserved motion. 
 
Rollercoaster: 

 
0=sFd  

WD by forces of constraint = 0 
Example: work done by uniform force. 
e.g. mg. 
Particle moves from ra to rb along some path. The force is constant. 

( ) ( ) ( )[ ] ( )[ ]
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r o
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nFF
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
 ++=

++≡

==
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∫∫∫

∫∫

cos

ˆˆ

ˆ

ˆ

ˆ

 

 
In the case of mg 
Work done hmgWba ∆==  
( h∆  = change in height) 
 
Example: Escape velocity 

A mass m is shot vertically from Earth with initial speed v. 
 What is the maximum altitude it reaches? 
 What speed does it need to escape Earth’s gravitational field? 

a 

b 

Small W 
Large W 

Fµ 

ds 

b 

a 

O 

rb 

ra 

θ nFo ˆ

( )ab rr −
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( ) ( ) ( ) ∫∫ −===−
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or 
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


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
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Eo Rr

mGMmvmv 11
2
1

2
1 22  

Find the largest value of r=rmax by setting v=0 
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Note that 
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For escape velocity let rmax ∞ 

146

2

101.1104.68.92

2

2

−==

=

=

msxxxxV

gRV

gRV

o

Eo

Eo

 

 
Potential Energy 

For a conservative force the work done in going from a to b depends only on the end 
points not the detail of the path. 

( ) ( )a
n

b
nr

r
rfrfdrFb

a
−=∫  

or we can define u 

( ) ( )ab
r

r
rurudrFb

a
+−=∫  

Note sign convention. 
ababba uukkW +−=−=  where ( ) bb uru =  

aabb ukuk +=+  if force is conservative 
Total mechanical energy = K+U 
where K is the kinetic energy, and U is the potential energy. 
This is conserved during the motion. 
 
Example: Potential energy for a uniform field 

( ) ( )ab
z

zab zzmgdzmgUU

kmgF
b

a
−=−−=−

−=

∫
 

So we can adopt 
( ).constmghU +=  

Sometimes you need to get F from U. 
Consider this in 1D 

( )( )∫−=− b

a

x

xab dxxFUU  

Suppose that xa=x and xb=x+∆x 

( ) ( ) ( )∫
∆+

−=−∆+=∆
xx

x
dxxfxuxxuu  

If ∆x is small then 
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( )
( ) ( )[ ]
( ) xxfu

xxxxfu
constxF

∆−≈∆
−∆+−≈∆

≈ .
 

or 

( )
dx
duxf −=  

 
Stability 

 
The particle will be stable at A and C. 

0,0 ==− F
dx
du  

At B and D, F=0 also. However, these are not considered to be positions of stability 
(there are always variations in a system). 
The system is only really stable at A and C  minima in u(x). 

 
3.2 – Conservation of energy in collisions between particles 

The general law of conservation of energy 
The basic forces of nature (e.g. gravity, electric, magnetic) are conservative. 
So, how do non-conservative forces arise? 
In the case of friction, mechanical energy is lost as a block slides along a surface (to 
heat, sound). 
In a series of detailed experiments, James Joule showed that heat is a form of 
energy. 
Mechanical energy  can be converted into heat. 
The reverse can happen, but has never been observed. 
 
Consider a collision between a fast helium atom and a group of stationary atoms: 
 

 
Before: KE only 
 

KE 

u(x) 

x 

A 

B 

C 

D 

veFve
dx
du

+=⇒−=



PC 1101 – Space, Time and Motion  Semester 1 

31 

 
After: “heat” 
 
KE conserved, but randomly shared with all atoms 
At microscopic level, every atomic collision is elastic. 
In practice, we never see reverse process where all individual KE’s are returned to 
one particle. (“Arrow of time”) 
 
Heat = energy contained in random movements of atoms. 

Ordered system  disordered system (easy) 
Disordered system  ordered system (Unlikely) 

 
If all forms of energy are taken into account (Kinetic, Potential, Heat, Sound, Light & 
radiation [Mass E=mc2]), the total energy of a closed system is conserved. 
 
Conservation laws and particle collisions 
Much of our knowledge of atoms, nuclei and elementary particles comes from 
scattering experiments. (e.g. Rutherford was led to the nuclear model of the atom 
through alpha particle scattering) 

 
Particle collisions: 3 stages 

a) Long before collision 
Initial conditions (i). Free particles, no forces. 

 

M1 

v1 

M2 v1 
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b) Interactive stage 
Forces act to change energies and momentum. 

 
c) Long time after 

Final conditions (f) 

 
We have Pi=Pf Momentum conservation. 
(3 scalar equations, but 6 unknowns – v1’, v2’) 

 Need to consider the energy equation. 
A collision is elastic if the total kinetic energy (KE) is unchanged. 
If entirely conservative forces  elastic collision. 
 
If some part of the interaction force is none conservative the collision is inelastic and KE 
is converted to/from other forms of energy. In general: 
 
ki=kf+Q 
 
where Q is the energy converted into another form. 
 

Q>0, inelastic (e.g. car crash) 
Q=0, elastic 
Q<0, inelastic (e.g. chemical reactions or nuclear collisions “reactions”) 

 
Elastic collisions in 1D 

 
Conservation of momentum 
m1v1+m2v2=m1v1’+m2v2’ 
Conservation of energy:  

2
22

2
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2
22

2
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1'2
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2
1

2
1 vmvmvmvm +=+  

 

M1 
v1 

M2
v2 

M1 
v1’ 

M2
v2’

Before 

After 

M1   v1 

M1   v1’ 

M2   v2 

M2   v2’ 
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Example: Elastic collision of two balls 
Conservation of momentum: 

3mv-mv=3mv1+mv2 
2v=3v1+v2 
 

Conservation of energy: 

2
2

2
1

2

2
2

2
1

22

34
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vvv
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vvv
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Therefore two solutions – v1=v (Initial condition) and v=0 (Collision has occurred) 
Therefore, v2=2v 

 
Collision in 3D 

These are usually easier in centre-of-mass (C.O.M.) frame of reference. 

Recall 
21

2211

mm
rmrm

R
+
+

=  

R is the position vector of the C.O.M. 
C.O.M. velocity relative to the lab frame,  
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2211
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=≡ &  

Velocities in C.O.M frame 
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Momentum in COM frame: 
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For a 2-body system, this is called the reduced mass. 

( )21
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=
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=

 

The reduced mass is the natural unit of mass in the COM frame of reference. 
Notice that in the COM frame the total momentum is zero. 
Usually problems involving the relative coordinates are easier in the COM frame 
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4. Special Relativity 
4.1 Introduction 

Newtonian mechanics deals with the motion of particles under the influence of forces. 
amF =  

The inertial mass m is a constant. 
Even if F is not known Newtonian mechanics tells us that 

∑=
i

ii vmP  

is a conserved quantity (no external forces) 

)(
2
1 2

1
2

2
2

1
VVMrdF −=∫  

   W.D. Change in KE 
 

 Conservation of energy. 
 
An experiment where this scheme fails: 

 
We can control the kinetic energy and measure the electrons velocity. 
 
− W=eV 
− W= ½ mev2k 
− v2=2k/M (Newtonian scheme) 
 
W = Work Done 
e = electron charge 
V = voltage 

30ns 

Oscilloscope

X X

Electron gun + 
van der Graff 
Accelerator 

LINAC (15MV) 
(Linear Accelerator) 

Electron 
detectors 

3ns 

t 

I 
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The electrons never go faster than the speed of light! They have a maximum speed 
c=2.99x108ms-1 (The velocity of light). 

 
If we view the experiment from another frame of reference ∑ '  and ∑  moves with 

respect to ∑ '  at a velocity vr what limiting velocity do we see for the electron now? 

What is ve-‘(measured in ∑ ' )? 
 Either we are in a ‘special’ frame of reference, or there is something wrong with the 

way that we combine velocities. 
 Something wrong with the way we view space and time! 

 
Photons: 
What is so special about light? 
− Experiments show that no matter what the energies of the photon (light of any 

frequency) has the same velocity in vacuum. 
− Light is made up of photons – little packets of energy. 

νhE =  Energy of each packet or photon. 
h=Planck’s constant. ≈6.63x10-34Js. 

− Light also has momentum (P) 
CPE =  

 
Measure momentum change. 

where 
λ
hP =   Wavelength 

V2 

Newtonian 
Prediction 

Actual

c2

1MeV   k2      3 

Σ’ Σ 

Vr 

e-

Vacuum 
~106 Torr 
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Also νhE =   frequency 
Can be checked by measurements of radiation pressure. 

 
Photons carry momentum and energy. Do they have mass? 
A thought experiment: 

 
Two objects initially at rest. 
Photon emitted with energy E at t=0. 

 

cm
Ev

'1
1 −=  

Mass of (1) m1 m1’ due to emission of photon. 


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

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 −+=

=

c
Lt

cm
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'
)(

'
)(

2
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1
1

 

After absorption. 
Assume that the centre of mass is fixed. 

L
c
Et

C
ELmt

c
ExM

LmmxM

22

21

''

0

−++−=

+=
 

M=m1+m2. 

get 
222 '

c
EmmM =−=∆  

pr 
2c

EMγ =  

Consider the second block 
γM  is added. 

E (of γ  ray) is also added. 
2McE =  (Valid for all objects) 

c2 is huge – 9.0x1016m2s-2. 
Small changes in mass correspond to huge changes of energy. 
Normally the kinetic energies of everyday objects corresponds to very small changes in 
mass. 
Develop a new dynamics for any object photons / electrons / anything else. 
For photons E=cp (Experiment) 

and 
2c

EM =  

So 
c
pM =  (1) for photons. 

L 

1 2 E 

x=0 

x 

1 2 
c
Lt =v1 v2 
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In Newtonian mechanics 
v
pM =  (2) Keep this. 

(1) looks like a particular case of (2). v c. 
Newtonian mechanics we work with energy differences. 

FdxdE =  (Work done) This is still valid when working with the high velocities of photons. 

vdpdE

dx
dt
dpdE

=

=
 

Using (2) 
v

pcE
2

=  (3) (Photons and massive bodies) 

pdpcEdE 2=  
Integrate both sides 

2222
oEpcE +=  (4) ( 2

oE  is a constant of integration) 
The constant of integration is ignored in Newtonian mechanics, but may have some role 
in new dynamics. 
 
Substitute (3) into (4) 

 
( ) 2

1221
)(

cv

E
vE o

−
=  - only works if v<c. Applies to massive bodies only. 

To convert this into mass, divide by c2. 

( ) 2
1221

)(
cv

M
vm o

−
=  

Mo is seen as the rest mass of an object. As v approaches c, the mass goes to infinity. 
The inertial mass depends on velocity. 
As the velocity gets very large it gets more difficult to move the electron. 
 
What happens at very low velocity? (v<<c) 
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(Binomial expansion) 
 
The kinetic energy: 

2
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1
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v
c
E

K

EvEK

o
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2c
Eo  must be mo (rest mass) 

2

2
1 vmk o=  for low v. 

The kinetic energy of the electron at high V≈c 
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Often you will see 
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We now have a new dynamics 
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22)(
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cγmcvmE
dt
pd

F

vγmvvmP

o
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==
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 22

0
22222 )()( CγMcMPCE O =+=  

Photons and massive particles Particles with mass 
 
Example: 

One of the reactions that generates energy in the sun. 
γHeDP +→+ 3

2
2
1  

Rest masses: 
P: 1.672x10-27kg 
D: 3.343x10-27kg 
3He: 5.0058x10-27kg 
 
P+D=5.0156x10-27kg 
 
The excess of mass is taken away by the gamma ray. 

kgxM 30108.9 −=∆  
Convert to an energy 

MeVJxmcE 5.5108.8 132 === −  
( )JxeV 1910602.11 −≡  

 
Back to basics: 
Light propagates as a wave. 
Waves are vibrations in some medium. 
Dense media produces faster waves. 
Light is very fast … so what is the medium? 
The prevailing theory was that an ether exists in which light travels in. 
(Mickleson-Morley experiment) 

 
Can be shown: 

221
1

/2
cv

cLt
−

= BS M1 BS 

( ) 2
122

2
1

/2

cv

cLt
−

=  BS M2 BS 

There is no fringe shift observed as the apparatus is moved through 90o. 
The speed of light is not affected by the motion of the Earth. 
This was the start of the end of the ether. 
 

S 

M2 

Beam 
splitter 

Telescope

L 

M1 
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Galilean Relativity 
That there are special frames of reference “inertial” frames. In these frames the laws of 
physics take the same form. 

amF =  
 may use different coordinates, but physics equations remain the same. 

A rock dropped from the top of a mast of a moving ship still falls at the base of the mast. 
 you can’t tell if the ship is moving by looking at things on the ship. 

 
Transformations between frames of reference. 
 

 
x’=x-vt 
y’=y 
z’=z 
t’=t 
^ Galilean transformations. 
u’x=ux-v 
a’x=ax 
 
Suppose we have two particles 

 
Suppose a force F12=f(x2-x1) 
In frame ∑  
f(x2-x1)=M2a2   EOM for (2) 
In frame ∑ ’ 
f(x2-x1)=f(x’2+vt-(x’1+vt)=f(x’2-x’2) 
And a’2=a2 
f(x2’-x1’)=m2a2’ in ∑ ’. 
 
The idea of the Ether violates Galilean relativity. 
 
Einstein’s Special Theory of Relativity 

1) All inertial frames are equivalent with respect to the laws of physics 
2) The speed of light in empty space is always c. 
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1 2 
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Einstein’s Clock 

 

Clock ticks with period 
c
L

t 02
=∆  

 
The clock is set in motion with velocity v. 
Clock has period ∆t in lab 
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( )

( )
'

1

2

2

2
2

2
122

0

2
122

0

2
1

2
2

0

tγ
cv

L
t

vc

L
t

tVLtc

∆=
−

=∆

−
=∆



















 ∆
+=∆

 

1≥γ  
Called time dilation. 

 
 
 
 

A C

B 

N

L0 
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4.2 The Lorentz Transformations 

 
Galilean Transformations: 
x’=x-vt 
x=x’+vt 
y=y’ 
z-z’ 
t=t’ 

 
We want to replace these with a new set of transformation rules which embody the 2nd 
postulate. 
We should be prepared for t≠t’. 

 
Points to note: 

1. x’ axis is drawn to represent events at t’=0 
2. t’ axis is drawn to represent the “world line” of the point x’=0 
3. None of this represents any real tilting of the x-axis. 

 Geometric representation of the transformation from Σ to Σ’. 
4. Linear transformation. 
5. x’=0, t’=0 and x=0, t=0 represent the same event. 

Point (4): 
x=ax’+bt’ (1a) 
x’=ax-bt (1b) 
General linear transformations. 
 
The motion of Σ as measured in Σ’: 

x=0 
0=ax’+bt’ 

v
a
b

t
x

−=−=
'
'  

or v
a
b

=  

 
Consider a beam of light moving in the x-direction in both Σ and Σ’. 

Assume that flash of light starts at t=0, x=0. 

postulatend
ctx
ctx

.2
'' 



=
=

 

Substitute into equation (1). 

x 

y 
Σ

x’ 

y’ 
Σ’ 

v 

x 

t 

x’

t’ 

P 

xp 

xp’ 

xt’ 

tp 
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( )
( )

v
a
bNB

vγ
cv

a

a
bcac

a
bc

a
bcac

tbacct
tbacct

=

=
−

=





















−=








 +






 −=⇒

−=
+=

:

)(
1

1

'
'

22

2
222

22

 

So: 
( )
( )vtxγx

vtxγx
−=
+=

'
''

 

For low velocities, γ tends to 1, and you get the Galilean transformations. 
Can also obtain the equations: 









−=









+=

2

2

'

''

c
vxtγt

c
vxtγt

 

 
The full set of equations ( ) )','(, txtx ↔  are known as the Lorentz transformations. 
 
Summery: 

 
Axes coincide at t=t’=0 

( )
( )









+=









−=

=
=

+=
−=

2

2

'

'

'
'

'

c
vxtγt

c
vxtγt

zz
yy

vtxγx
vtxγx

 

 
Example: 
Suppose that Σ’ has velocity v with respect to Σ. v=0.6c 
Clocks are set so that t=t’=0 when x=x’=0. 
Two events occur. 
1) x1=10m, t1=2x10-7s 
2) x2=50m, t2=3x10-7s 
What is the distance between these two events as measured in Σ’? 

x 

y Σ Σ’y’ 

x’

v
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( ) ( ) ( )[ ]

( ) ( )

mxx

cxxx

γ

ttvxxγxx

5.27''

1023
5
31050

4
5''

4
5

25
91

1
''

12

7
12

121212

=−






 −−−=−

=
−

=

−−−=−

−

 

 
Lorentz Contraction: 

What is the length of an object? 

 
L0=x2-x1 at any time t in Σ. 
Need two events at the same t’. 

( )
( )

( )
'

''
'''

''
''

0

1212

21

222

111

LγL
xxγxx

ttt
vtxγx

vtxγx

=

−=−

==

+=

+=

 

The object is shorter in the moving frame by a factor 1≥γ . 
Called Lorentz contraction (only along x-direction) 

 
4.3 Transformation of Velocities 

( )









+=

=
+=

2
''

'
'

c
vxtγt

yy
vtxγx

 

 

( )
2

2
1

1

c
v

vγ
−

=  

By definition 

'
''

dt
dxux =  

(x component of velocity) 

y 

x 

y’ 

x’ 

Σ’ 

v 

y 

x 

L0 

y’ 

x’ 

Σ’ 

v 

(2) (1) 
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'
''

dt
dyuy =  

dt
dyu

dt
dxu yx == ,  

( )









+=








+=

=

+=






 +=

'1
'
'1

'

'

'
'
'

'

22 x

y

x

u
c
vγ

dt
dx

c
vγ

dt
dt

u
dt
dy

vuγv
dt
dxγ

dt
dx

 









+

+
==

2

'
1

''
'

c
vu

vu
dt
dt

dt
dxu

x

x
x  (1) 









+

===

2

'
1

''
'

c
vu

γ

u
dt
dt

dt
dy

dt
dyu

x

y
y  (2) 

Does (1) give the correct behaviour at low v/c? 

vuu
c
v

xx +≈

<<

'

1
 

OK. 
Also 'yy uu ≈  
Example 1: 

Suppose 
2

' cuv x ==  

cccux 5
4

5.01
5.05.0
2

=
+

+
=  

 
Example 2: 

Suppose cux ='  
Light propagating along x’ direction. 

cc
cv
cv

cv
vcux =








+
+

=







+

+
=

1
1

1
 

 
In addition to (1) and (2) we can obtain 

21
'

cvu
vu

u
x

x
x

−

−
=  (3) 

( )21
'

cvuγ

u
u

x

y
y

−
=  (4) 

(1) through (4)  remember. 
 

4.4 The Doppler Effect 
Here we will consider EM radiation from a source in frame Σ (origin) observed in frame Σ’ 
(origin) 
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in Σ. 
Consider a train of n peaks 
nth peak at time (in Σ) ( )τn 1−  
Space time diagram in Σ: 

 
111 vtxctx o +==  

and 
( ) 222 vtxτntcx o +=−=  

vc
τnctt

−
=− 12  

and 

vc
τvncxx

−
=− 12  

 
From the Lorentz transformations: 

( ) ( )[ ]2
121212 '' cxxvttγtt −−−=−  

 
Substitute from above: 









−

−
−

=−
vc
τvcn

c
v

vc
τcnγtt

212 ''  

So this time difference is n periods in Σ’. 












−

−
=

2

2
1'

c
v

vc
τcγτ  

x 

y 
Σ 

x’ 

y
Σ’ 

S 

v

τ 

t=0 

x 

t 

1st pulse 

(n+1)th peak 

t=0 

t=nτ 

xo 

(x1,t1) 

(x2,t2) 
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Let 
c
vβ =  

( )
( )
( )τβγτ

τ
β
βγτ

+=
−
−

=

1'
1
1'

2

 

But 

21

1

β
γ

−
=  

So 

τ
β
βτ

21

1
1' 








−
+

=  

or in terms of frequency ν  

ν
β
βν

21

1
1' 








+
−

=  

If v is positive  β is positive. 
νν <'  

observed frequency is lower. 
If source is moving towards observer: 

νν >'  
Observed frequency higher. 

 
4.5 Relativistic Mechanics 

( )

( )
( ) cvβ

β
vγ

pccME

MccMγF

vMγP
Mγvm

o

o

o

o

=
−

=

+=

==

=

=

,
1

1
2

22222

22  

 
Consider the following inelastic collision: 
Σ’ (Zero momentum frame) 

 
Stationary composite particle in Σ’ 
 
Σ lab frame: stationary target 

u -u 

M(u) M(u)

As yet unknown 

Before 

After 

Mo 
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Recall 

2

'
1

'

c
vu

vu
u

x

x
x

+

+
=  

Here uvuVu xx === ',  

2

2
1

2

c
u
uV

+

= * 

V = velocity of projectile as seen in Σ. 
Suppose we have the following conservation laws: 
Momentum conservation: ( ) Muvvm =  
Mass conservation: ( ) Mmvm o =+  

Eliminate M ( )
uv

u
m

vm

o −
=  

Using * (relates v and u) 

 02 2
2

2 =+









− cu

v
cu  

Solution: 

21

2
222














−










± c

v
c

v
c  

2
vu →  as V<<c  (-) 

( ) ( )













=

−
= vγ

cvm
vm

o 221

1  

We have linked the mechanics that was suggested by the thought experiment with the 
Lorentz transformations. 
 
Example: Absorption of photons 

 
Find V. 
Conservation of Energy: 22 'cMEcME γo =+=  

V 

M(v)

Before 

After u 

M 

mo 

Photon 
Before: 

Eγ 

Atom or nucleus 
at rest 

Mo 

M’ 

V After: 
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Conservation of momentum: 
c

E
P γ=  ( ) 





 += 22222 pccME o  

( )γo

γ

γ
o

EcM

E
c
vβ

c

E
MM

+
==

+=

2

2
'

 

Recoil velocity. 
 
Example: Emission of a photon 

 
Energy and momentum conservation: 
 

c
E

P
c

E
VMP

EEEcMcME

γγ

vγo

−=−==

+=+==

''0

'' 22

 

So: 

( ) ( ) ( )
( ) ( )
( ) ( ) γooo

γγoo

o

γ

γo

EcMcMcM

EEcMcM

cPEcM

EcP

EcME

22222

22222

2222

2

2'

'

'''

'

'

−=

−−=

−=

=

−=

 

 
Energy levels within the atom / nucleus. 

EcMcM oo ∆−= 22'  
Square this expression: 

( ) ( ) 222222 2' EEcMcMcM ooo ∆+∆−= 9 
Combine with * 











 ∆
−∆=

22
1

cM
EEE
o

γ  

The photon does not have exactly the same energy difference of the levels – it is 
slightly less. 2cME o<<∆ . This is significant because 

Before: 

Mo 

After: 
Photon 

Eγ 

M’ 
V 

Momentum P’ 
Energy E’ 
Rest mass Mo’

Moc2 

Moc2 

∆E 
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γ is not absorbed by the second atom – light gets out. 
 

Example: Creation of a new particle 
Two protons in zero momentum frame 

 
22mcE =  

[ ]+++→+ πNPPP  
Collision creates a pion. 

 

37.0

074.1

2
1

2 22

=⇒

==

+=⇒

+=

c
v

γ
M
M

M
M

M
M

cMcME

o

o

π

o

πo

 

(In zero momentum frame) 

c
vβ =  

 

31.1
65.0

1

1

1

21

=⇒

=
+

+
=

γ
β

β
βββ

 

Kinetic energy: 
( )

MeVE
cMγcmmcE

k

ooK

290
1 2

1
22

=

−=−=  

∆E 

Photon 
Eγ ∆E 

1st atom 2nd atom

mc2 mc2

p -p

P N π+ 

Mo,0 Mo,0 Mπ,0 

Zero momentum 

Beam 

c
v

β 1
1 =  

Target 
Lab frame

Σ 
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5. Angular Momentum and Rotation of Rigid Bodies 
5.1 Introduction 

5.1.1 Angular Momentum 
Angular momentum is defined for a particle as 

pxrL =  
L: Angular momentum. Units of kgm2s-1 (No special names) 
r: Position 
P: momentum 

 
If the motion is in the x,y plane then L must be in the z-direction. 

 
r decomposed into r┴ and rII. 
But ( ) θθπ sinsin =−  

Lprpxr == ⊥  

Note that L gives a sense of the rotation. 
L is along positive z axis for anticlockwise  
L is along negative z axis for clockwise. 
(Rotation in x,y plane) 
 

( )kPrPr
PP
rr

kji
PxrL xyyx

yx

yx −===
0
0  

Note that L depends on the choice of origin. 
 

5.1.2 Torque 
Fxr=τ  

r: Position 
F: Force acting on the particle. 

 
Example: Force and torque acting on a circular disc. 

 
RF2=τ    0=τ  

Net force = 0   Net force = 2F 

θ 

r 

r┴ 
rII 

p 

Π-θ 

x

y 

R R

F 

F F F
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RF=τ  

Net force = f 
 
Torque is important because it determines the rate of change of Angular Momentum. 

( ) FxrPxrPxrPxrPxr
dt
d

dt
Ld

+=+== &&&  

The second term in this is the torque τ  
Term 1 is 0 as both vectors are in the same direction. 

0=
≡=

rxr
rmvmP

&&

&
 

 

τ=
dt
Ld

 







= F

dt
Pd  

 
5.2 Rigid Body Rotation about a fixed axis 

Often applications occur when the rotation is about a “fixed axis”, i.e. one which doesn’t 
rotate in space. 
If the body is rigid then every particle within the system remains at a fixed distance from 
that axis. 
 

 
Rotation of a particle of mass mj with position rj about the z-axis. 
Circular motion about z. Radius is jρ  

( ) jj

jj

vmrjL

v

.=

= ωρ
 

Only interested in Lz. 
( ) zjjz dvmjL .=  

(dz is the distance to the z-axis) 
( ) ωρ 2

jjjjjz PmvmjL ==  
Total AM about z is 

F 

R 

y

x 

z 

rj 

Mj 

ρj 
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( ) ∑∑ ==
j

jj
j

zz MjLL ωρ 2  

ωILz =  
I is the moment of inertia. 

∑=
j

jjMI 2ρ  

For a continuous body 

∫∑ = dmM
j

jj
22 ρρ  

and ( )∫ ∫ +== dmyxdmI 222ρ  

 

 
Uniform stick pivoted about x=0 

2
0

2

3
1 MLdmxI

L
== ∫  

 
Dynamics of a pure rotation. 

Postulate that internal torques sum to zero. 
 Angular momentum is conserved. 

( ) αωωτ

τω

III
dt
d

dt
LdIL

z

z

===⇒

==

&

,
 

α is the angular acceleration. 
ατ Iz =  (Recall maF = ) 

Kinetic energy: 

∑∑ == 222

2
1

2
1 ωρ jj

j
jj MvmK  

2

2
1 ωIK =  

(Similar to 2

2
1 mvk = ) 

 
5.3 Translation and rotation 

Often systems show both translational and rotational motion. e.g. a drum rolling down a 
hill. 

( )zoz VxMRIL += ω  
Io is the moment of inertia about an axis through the COM 
R is the position of the centre of mass 
M is the total mass. 
 
Consider N particles . 

( )∑
=

=
N

j
jjj rxMrL

1

&  

COM (Centre Of Mass) ∑
=

=
N

j

jj

M

rM
R

1
 

'jj rRr +=  

x 
L

M
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'jr  is the position in COM frame. 

( ) ( )

∑∑∑∑

∑

+++=

++=

j
jjj

j
j

j
jj

j
j

j
jjj

rxrMrMxRRxrMRMxR

rRxMrRL

'''

''

&&&&

&&

 

0' =∑
j

jj rM as it is the COM in the COM frame. 

0' =∑
j

jj rM & as above. 

VxMRMRxRMRxR
j

j ==∑ &&  (M is the total mass, V is the velocity of COM) 

The final term is the angular momentum in the COM frame. 
'' jj

j
j rxrMVxMRL &∑+=  

( ) ωozz IVRxML +=  
 
( )zVRxM  is the orbital term, and ωoI  the spin term. 
 
Torque can also be divided into two components. 

( ) ( ) ( ) FxRFxrFxRrFxr
j

jj
j

jj
j

jj +=+== ∑∑∑ ''τ  

when ∑=
j

jfF  net force. 

Take z components 
( )zoz FxR+= ττ  * 

oτ is the torque about z in COM. 
( )zFxR  is the torque on COM. 
 
We can show that the angular acceleration (α) ωα &≡  depends on torque about the axis 
through the COM (τo) 

( )

( )
( )
( )zo

zo

zo
z

ozz

FxRI
axMRI

VxMR
dt
dI

dt
dL

IVxMRL

+=

+=

+=

+=

α
α

α

ω

 

From * this must be: 
( ) ( )zozo FxRIFxR +=+ ατ  

ατ oo I=  
This equation is independent of the motion of the COM. 
The COM may even be accelerating, and this equation will still hold. 
 
Kinetic energy of system? 

( )∑∑ +==
j

jj
j

jj rRMvMK
22 '

2
1

2
1 &&  






 == 22 . AAAA  
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Fixed axis rotation 

( )

∑∑∑

∑

++=

+=

=

j
j

j
jj

j
jj

j
jj

jj

vMmRM

RMK

r

22

2

2
1'.'

2
1

2
1

''

ρρ

ρ

ρ

&&&

&&

&&

 

∑
j

jj
mR '.ρ&&  is 0 in COM. 

ωρρ '' jj
=&  

So 22

2
1

2
1 MVIK o += ω  

2

2
1 ωoI  is the spin KE 

2

2
1 MV  is the orbital KE 

 
Work-Energy Theorem 
Recall abab WkK =−  

∫= b

a

r

rab rdFW  

For the COM 








=

=

=

=

2

2

2

2
1

..

mvd

dV
dt
Vd

mRdF

dt
Vd

M

dt
RdmF

 

Integrate 

∫ −=b

a

R

R ab mvmvRdF 22

2
1

2
1  

What about rotation? 

dt
dII ooo

ωατ ==  

Multiply both sides by dθ=ωdt 

z 

'
j

ρ  
Mj

Rj’ 
Time 
dependant 

ω 
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






=

=

2

2
1 ω

ωωωτ

o

oo

Id

dt
dt
dI

 

(Rotational kinetic energy) 
22

2
1

2
1

aoboo IIdb

a
ωωθτ

θ

θ
−=∫  

 
 

Uniform precession of the Gyroscope 

 
Why doesn’t it fall down? 

 
Why doesn’t it rotate around the COM? 
There is a net torque 

wL=τ  

 
ros eIL ω=  

ω is the frequency of flywheel. 
Io is the moment of inertia of flywheel. 

θeL
dt
Ld

s
s Ω=  

 
( ) ( )

θ

τ
ewL

ewxeL zr

=

−=
 

For uniform procession: 

Flywheel 

Ls 

ω 

z 

N 

W 

N 

W 

L 

Ls 
Ls(t) 

Ls(t+∆t) 

Ls 

eθ

er 
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so

s

I
wL

wLL

ω
=Ω

=Ω
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Syllabus 
1. Defining Space, Time And Motion 

Frames of reference, coordinate systems and vectors 
Velocity and acceleration 
Circular Motion 

2. Newton’s Laws of Motion 
Inertial frames and Newton I, Equilibrium conditions, forces and torque 
Newton II, Equations of Motion, Impulse 
Forces. Action at a distance. 
Momentum conservation and Newton III 
Applications of Newtonian Mechanics 

3. Conservation of Energy 
Conservation principles in physics 
Kinetic energy and work 
Potential energy. Conservation forces. 
Not covered specifically, but throughout the course. 

4. Conservation of Linear and Angular Momenta 
Conservation of linear momentum, internal forces for a collection of particles 
Centre of mass 
Angular momentum and Newton II 
Conservation of angular momentum. 

5. Special Relativity 
Galilean transformations. The Postulates of special relativity 
Lorentz transformations. Lorentz contraction and time dilation 
Simultaneity. Transformation of velocities. The Doppler effect. 

6. Relativistic Momentum & Energy 
Relativistic energy and momentum of massive particles. 
Energy equivalence of mass; pair production, nuclear energy. 
Massless particles. The Compton effect 

7. Classical Dynamics of Rigid Bodies 
Equation of motion; kinetic energy, angular momentum and moments of inertia 
Finding moments of inertia. Gyroscopic motion. 
No questions on gyroscopic motion. 

8. Universal Gravitation 
Kepler’s Laws and planetary motion. 
Law of gravitation, field and potential. 
Binary systems and reduced mass. 
Inertial and gravitational mass. 
Section dropped!!! 

 
Questions in exams will be more difficult than the exercises in the tutorials, but easier 
than problems. 
Do as many questions as possible as practice! 
Exam will consist of one general question covering various topics in the course, which 
must be answered, and three more specific questions, of which two must be answered. 
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Equations: 
Definition of velocity and acceleration vectors: 
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Linear motion with uniform acceleration. 
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Velocity and Acceleration of Polar Coordinates 
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Newton’s laws: 
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Work done, Potential and Kinetic Energy 
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(Conservational forces only) 
 

Special Potentials: 
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Centre of Mass and 2-body collisions 
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Angular momentum and torque: 
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Pure rotation about a fixed axis: 
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Rotation and Translation 
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Lorentz transformations 
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Intervals: 
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Lorentz contraction and time dilation as special cases 
 

Relativistic transformation of velocity 
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Relativistic mechanics 
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All these formulae all need to be memorized!!! 


