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1. Functions and Graphs 
1.1 Functions 

x = f(t) 
y = g(t) 
z = h(t) 
 
y = L(x) 
y = dependant variable 
x = independent variable. 
 
If y has a unique value for a certain value of x  y is ‘single-valued’. 
 
We can use a formula to describe the function. 
e.g. y=mx+c=f(x) 
 ax+by+c 

p=qf+Φ 
I=V/R  I=f(V,R) 
 

 
Some functions can only have a certain range of values that the dependant variable can 
take on. 
 
y=f(x) y=dependant. 
 
e.g. tωAtE cos)( =  

AtEA
tω
≤≤−
≤≤−

)(
1cos1

 

 
Sometimes an independent variable can only have a certain domain. 
e.g. f(x)=ln(x) 
x>0 
 
Other useful properties: 
The zero’s of a function – where the dependant variable = 0 (i.e. f(x)=0) 
The intercept is when the independent variable = 0 (i.e. f(0) ) 
 

1.2 Cartesian Coordinate System & Graphs 

 
2D: 
y-axis - Ordinate 
x-axis – Abscissa 
 
Things to help when drawing a graph: 
1. Intercepts and Zeros 
2. Asymptotes – does the function tend to a specific value? 

Input 

 

Output 

P(x,y) 
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3. Infinities 
4. Gradient (1st derivative) 
5. Gradient (2nd derivative) 
6. Symmetry 
7. Range & Domain 
 
e.g. θp cos=  

i)  
2

3,
2

,0)(,1)0( ππθθpp ±±===  

ii) θ
θd

dp sin−=  

When θ=0, -sin θ=0 
When θ=π/2, -sin θ=-1 

iv) θ
θd

pd cos
2

2
−=  

vi) Symmetric about p-axis 
 
If f(x) = f(-x)  Even function, e.g. cosθ is even. 
If f(x)=-f(-x)  Odd function, e.g. sinθ is odd. 
 
1.3 Polar Functions 

 
P(x,y) y=f(x) 
P(r,θ) r=f(θ) 

022 >+== yxrOP  
 
θ is the polar angle. 
 
Relationships between x, y, r, θ. 

θrx cos= – 1.1 
θry sin= – 1.2 

22 yxr += – 1.3 
 
N.B. θ is not unique – we can go around the circle again to get to the point. 

 Polar angle = θ+n2π n=integer. 
 
e.g. (-3,4) 

r=5 
sinθ=4/5=0.8 
cosθ=-3/5=-0.6 
arcsin(0.8)=53.13o 
arcos(-0.6)=126.87o 
sin(126.87)=0.8 
(-3,4) (5,126.87o) 

 
 

-θ 

θ 

P(x,y) 

P(r,θ) 

x

y 
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e.g. Equation of a circle 

22

222

)( xrxfy

ryx

−±==

=+
 

 
Polar coordinates r=c (where c = radius of circle) 
 
e.g. tracks on a CD 

θ
π
hbr

2
−=  

 
1.4 Specific Functions 

1.4.1 Trigonometry Functions 

r
xθ =cos  

r
yθ =sin  

θ
θ

x
yθ

cos
sintan ==  

θ
θ

cos
1sec ≡  

θ
θec

sin
1cos ≡  

θ
θ

tan
1cot ≡  

cosxsinysinxcosyy)sin(x ±=±  
 
Nomendature: We will use arcsin(x) and not sin-1(x). 
 
Trig Identities 

cosxsinysinxcosyy)sin(x ±=±  
xsinysxcosycy)cos(x inos m=±  

1cossin 22 =+ xx  
 
Useful ones are: 
sin2x=2sinxcosx 
cos2x=cos2x-sin2x 
         =2cos2x-1 
         =1-2sin2x 
 

Harmonic functions 
Take ubuauf sincos)( +=  (a, b constants) 

Let 22 bac +=  

 




 += u
c
bu

c
acuf sincos)(  

Let Φ so that cosΦ=a/c 
          sinΦ=a/c 

 
[ ]

)cos(.)(
sinsincoscos)(

Φ+=
Φ−Φ=

ucuf
uucuf

 

With harmonic functions, it is normal to put a constant in front of u. 
 f(u)=cos(ku+Φ ) 

From this, we can define frequency, period, amplitude and phase. 
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e.g.: 

Φ=
=

=

=

Phase
cAmplitude

v
Period

k
vFrequency

1

1)(

 

 
1.4.2 Exponential Functions 

 
y=ax where a is a positive constant. 
This is an exponential function of base a. 
When x=0, ax=1 
When x ∞, ax ∞ 
When x -∞, ax 0 
 
Special case when a=e (2.7182….) 
y=f(x)=ex [or exp(x) or expx] 
This has the properties that when x=0, g=1. 

 Implies that x
x

e
dx

de
dx
dy

=≡ – 1.6 

x
kx

ke
dx

de
= – 1.7 

( )

1ln
01ln

ln)ln(

lnlnln

lnln)ln(

logln

ln

=
=
=

=

−=








+=
=

=

≡
+

e

xe

xax

yx
y
x

yxxy
xx

xxx

x

a

abba

baba
e

 

ax-ax

x

y 
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2. Complex Numbers 
2.1 Introduction 

Consider the quadratic equation 0222 =+− xx . What are the solutions? 
a=1, b=-2, c=2 

11
2

42

−±=

−±−
=

x
a

acbbx  

There is no ordinary number whose square is -1. We call 1−  an ‘imaginary’ number, 
and use the symbol i (not to be confused with î  or i for current. Also, engineers use j 
rather than i.) 
Our solutions can now be written ix ±= 1  
 

22 iyx −  is called the complex conjugate of 22 iyx + . It is denoted by z*. 
To find the complex conjugate, replace al i’s with –i’s. 
NB: you can always equate the real or imaginary parts on either side of an equation. 
 

2.2 Standard Form 
The standard form of a complex number is: 
z=x+iy 
(x and y are real numbers). 
The real part of z is x  x=Re{z} 
The imaginary part of z is y  y=Im{z} 
(Think of z as having components x and y  (x,y) 
If a complex number is not in standard form, then it cannot be used. 
 

2.3 Manipulation of complex numbers 
2.3.1 Addition 

}Re{22*

)()( 212121

222

111

zxzz

yyixxzz
iyxz

iyxz

==+

+++=+
+=

+=

 

 
2.3.2 Subtraction 

}Im{2*

)()( 212111

zriyzz

yyixxzz

==−

−+−=−

 

 
2.3.3 Multiplication 

)()(

))((

2121212121

21
2

21212121

221121

xyyxiyyxxzz
yyixiyiyxxxzz

iyxiyxzz

++−=
+++=

++=

 

 
Note that i2=1 
 

2.3.4 Division 

Note that we cannot divide straight away, as 
22

1
iyx +

is not in standard form. 
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( )
( )( )

( )














+
−















+
=

+

−
=

−+
−

=
+

=

+
+

=≡

2
2

2
2

2
2

2
2

2

2
2

2
2

2

22

2122

21

212

22

11

2
1

2

1

11

1

yx

y
i

yx

x

yx

iyx
iyxiyx

iyx
iyxz

iyx
iyx

z
z

z
z

 

As this is now in standard form, we can get the desired answer. 

2
2

21

2

1 *

z

zz
z
z

=  

 
2.4 Argand Diagrams 

Take z=x+iy 
We can consider this as having two components  (x,y)  we can plot the number as 
Cartesian-like coordinates. 

 
The length of the line OP is 22 yxr += . 
r is known as the modulus of z (also known as mod(z) or |z|). 
[|z|2=zxz*] 
The polar angle θ is called the argument of z. It is written as arg(z)=θ. 
 

( )θiθrθirθriyx
θry
θrx

sincossincos
sin
cos

+=+=+
=
=

 

(Polar form of the complex number) 
 
Rotation: 
Multiply by i: ( ) ixyiyxi +−=+  
Multiply by –i: ( ) ixyiyxi −−=+−  
Therefore, a multiplication by i or –i leads to a rotation of π/2 or –π/2 in the Argand 
Diagram. 
 

2.5 Exponential form for complex numbers 
( )

( )

θi

θi
θi

θi

eθiθ

ie
θd

dee

xfiθiθiθiθ
dx
θdf

xfrθiθrz

=+∴

=→

=+=+−=

=+=

sincos

)(.sincoscossin)(
)(.sincos

 

Therefore: 
( ) θireθiθrz =+= sincos  - Euler’s Formula 

2*.

*

rrerezz

rez
θiθi

θi

==

=
−

−
 

x 
Re 

y 
Im 

P 
(x,y) 

y-ix -x-iy 

-y+ix 

x+iy 

r 

θ 
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2.5.1 Multiplication and Division in the Exponential Polar Form. 

( )

( )21

2

1

21

2

1

2

1

2

1

2121

2222

1111

θθi
θi

θi

θθi

θi

θi

e
r
r

er
er

z
z

errzz

eriyxz

eriyxz

−

+

==

=

=+=

=+=

 

 
2.6 Exponential form of sinθ + cosθ + De Moivre’s Theorum 

θiθe θi sincos +=  - 2.15 
θiθe θi sincos −=−  - 2.16 

2.15 + 2.16  ( )θiθi eeθ −+=
2
1cos  - 2.17 

2.15 - 2.16  ( )θiθi ee
i

θ −−=
2
1sin  - 2.18 

 These can be used to prove many trig identities. 
In 2.15, let’s replace θ by nθ 

( ) ( )nnθiθin θiθeθniθne sincossincos +==+=  
 

( )nθiθθniθn sincossincos +=+  - 2.19 
De Moivre’s Theorem 
 
Examples: 
1. What does ii equal? 

81.4

2sin2cos

222

2

2

===







=+=

−ππi
iπi

πi

eee

iπiπe
 

2. 1sincos −=+= πiπe πi  

 
ie

πi
−=23

 
3. πniπi ee 22 1 ==   n=integer. 
 
2.6.1 Application of De Moivre’s Theorem 

Example 2.4 
Express sin3θ and cos3 θ in terms of powers of sinθ and cosθ 

( )
( ) ( )
( )( )

( ) ( )θθθiθθθ

θθθiθθiθθiθθθ

θiθθθiθθ

θiθθiθ

θiθθiθ

3223

232223

22

2

3

sinsincos3cossin2cos

sincos2sincossincossin2cossincos

sincoscossin2sincos

sincossincos

sincos3sin3cos

−+−=

−−++−=

++−=

++=

+=+

 

π/2 π 

3π/2 2π 

i 

-i 

1 -1 
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Real parts: θθθθ cossin3cos3cos 23 −=  
Imaginary parts: θθθθ 32 sinsincos33sin −=  
 
How about getting powers of θθ cossin +  into θnθn cossin + ? 
Let θniθnezez θinnθi sincos, +===  

θniθne
z

z θin
n

n sincos1
−=== −−  

( ) ( ) θnθniθnθniθn
z

z n
n cos2sincossincos1

=−++=+  - 2.20 

Similarly θni
z

z
n

n sin21
=−  - 2.21 

 
Example 2.5 

Take n=1 and use 2.21 

( ) ( )

θθθ

θiiθii
z

zi
z

zi
zz

zzi
zz

z
z

zzi
z

z
z

zzi
z

ziθ

z
z

i
θ

θi
z

z

33

3
3

3
3

3
3

2
2

3

3
2

sin
4
1sin

4
3sin

sin2
8
33sin2

8

1
8
31

8

133
8

1212
8

11
8

1
2

sin

1
2
1sin

sin21

−=

−=








 −−






 −=








 −+−=








 −+−+−=








 −






 +−=






 ==








 ==→

=−

 

 
Example 2.6 

nth roots of unity 
i.e. what are the roots of zn=1? 

1,...,1,0,

,...2,1,0,1,1
2

22

−==

===

nkez

kee
πkin

πkiπi
 

Take nth root of both sides 

( ) ( )

( ) n
πni

n
πi

n
πi

n
πki

n
πkinπkinn

eznk

ezk

ezk

zk
ez

eezz

12

4

2

2

2121

,1

,2

,1

1,0

−
=−=

==

==

==
=

===
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e.g. n=3 
z=1 

3234

32

πiπi

πi

eez

ez
−

==

=  

 
De Moivre’s Theorem 

( )
egerke

θiθθniθne
πki

nθin

int,

sincossincos
2 =

+=+=
 

 
The roots of a polynomial with real coefficients occur in conjugate pairs. 
 

 Remember a real number is its’ own conjugate. 
 

2.6 Hyperbolic Functions 
The hyperbolic functions are the complex analogies of the trig functions. 
Remember 2.17 and 2.18 

( )
( )ixix

ixix

ee
i

x

eex

−

−

−=

+=

2
1sin

2
1cos

 

Now:- 

( )
( )xx

xx

eex

eex

−

−

−=

+=

2
1sinh

2
1cosh

 

x ix into cos  gives cosh. 
 

( ) ( ) xeeix ixix cosh
2
1cos =+= −  

 
i.e.:- 

( )
( )ixxi

xix
sinsinh
coshcos

=
=

 

 
Very simply, we can show: 

( )

xx
dx
d

xx
dx
d

sinhcosh

coshsinh

=

=
 

 
 
 
 

Im 

Re 

2π/2 

4π/3 
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2.7 Applications of Complex Numbers in Physics 
Damped Oscillator 

 

 
 
Equation of motion: 

2

2

dt
xdm

dt
dxbkxF =−−=  

0

0

2

2

2

2

=++

=++

x
m
k

dt
dx

m
b

dt
xd

kx
dt
dxb

dt
xdm

 

[With no damping  0
2

2
=+ x

m
k

dt
xd   Oscillation at frequency 

m
kωo = ] 

02
2

2
=++ xω

dt
dx

m
b

dt
xd

o  

We want to find x(t) 
Try { } ( ) { }tωi

oeAtxz ReRe ==  

zωAeωA
dt

zd

zωiAeωiA
dt
dz

o
tωi

o

o
tωi

o

22
2

2
−==

==
 

Substitute into equation of motion (for z) 

0

0

22

22

=++−

=++−

o

o

ωω
m
biω

zωzω
m
bizω

 

i.e. quadratic in ω . 

'
2

2
42

ω
m
ibω

a
acbbω

±=

−±−
=

 

Where 
2

2
1' 








−=

o
o ωm

bωω  

Substitute into tωi
oeAz =  

k 

x 

M 

x 

t 

Ao 
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{ } tωeAztx

eeAeAz

t
m
b

o

tωit
m
b

o

tω
m
ibi

o

'cosRe)( 2

'2
'

2








 −

±
−








 ±

==

==
 

 
 
Interference of two electromagnetic waves of equal intensity 

 

( )δtωAE
tωAE

o

o

+=

=

cos
cos

2

1  

δ accounts for the path distance between two waves 

( )( )
2

cos
2

cos2coscos21
δδtωAδtωtωAEE oo 







 +=++=+  

( 






 +
2

cos δtω  is ignored) 

Intensity
2

cos4 222
21

δAEE o=+=  

 

Let
{ } { }
{ } [ ]{ }δtωi

o

tωi
o

eAzE

eAzE
+==

==

ReRe

ReRe

22

11  

Ao 

t

d 

I 

24 oA  
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( )( )
( )( )
( )( ) ( )( )

( )
( )

( )
( )
( )

( )2/cos4

cos12

cos22

2/cos2cos1

cos
2
1

11

*

22

2

2

2

2

2

2121
2

21

21

δAI

δA

δA

δδ

δee

eeA

eeeeA

zzzzzzI

eeAzz

o

o

o

δiδi

δiδi
o

δtωitωiδtωitωi
o

δtωitωi
o

=

+=

+=

















=+

=+

+++=

++=

++=+=

+=+

−

−

+−−+

+

 

 
Complex Induction in Electronic Circuits 

Define: 
Rimpedencezr =)(  Resistor 

Cωi
zc

1
=  Capacitance 

LωizL =  Coil 
Impendence can be combined like resistors. 

 
21 zzzT +=  

 

21

21

21

111

zz
zz

z

zzz

T

T

+
=→

+=

 

 









==
cz
tv

R
VI )(Re  

Let { }tωievtv maxRe)( =  

z1 z2 

z1 

z2 

~ 

I(t) 

v(t)=vmax=const. 

Vmax 

v(t) 

t
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{ }

{ } tωCvωtωtωiCvωtI

eCVωi
cωi

ev
tI

maz

tωi
tωi

sinsincosRe.)(

Re
1

Re)(

max

max
max

−=+=

=












=∴
 

 
 I(t) ‘leads’ the voltage by 90o. 

 

tω
Lω

v

Lωi
ev

z
tvretI

tωi

L

sin

Re

)()(

max

max

=













=









=

 

 
I(t) ‘lags’ behind v(t) by 90o. 
 
 

t 

v(t) I(t)

~ 
L v(t)=vmaxcosωt 

I(t) v(t) 
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3. Differential Calculus 
3.1 The Differential 

A differential describes the rate of change of a function. 

 

( ).tan
12

12 const
xx
yy

α =
−
−

=  

αtan  is the gradient 

 
If we take P’+Q’ lose together then 

( )
( ) x

f
xxx
xfxxfα

∆
∆

=
−∆+
−∆+

≈
)(tan  

As ∆x gets smaller & smaller the approximation gets better. (Makes no sense when 
∆x=0 0/0) 
Define the first derivative of a function as:- 

dx
dfxf

dx
d

dx
xdfxf ≡≡≡ )()()('  

( )






∆

−∆+
→∆

=
x

xfxxf
x

xf )('
0

lim
)('  - 3.1 

 

y2 

y1 

x1 x2 

P 

Q 

α 

y2- y1 

x2- x1 

α 

∆f 
yf(x)=y 

f(x+δx)=y+δy 

y=f(x) 

P’ 

Q’ tangent 

x x+δx

No derivative 
No 1st derivative
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Near to point P’, ∆f is given by x
dx

xdff ∆≈∆
)(  - 3.2 

The second derivative is the gradient of the gradient. 
(i.e. replace f(x) by f’(x) in 3.1) 

( )






∆

−+
→∆

=∴
x

xfxδxf
x

xf )(''
0

lim
)(''  - 3.4 

2

2)('
dx

fd
dx

xdf
≡≡  - 3.5 

[Note 
2

2

2







≠
dx
df

dx
fd ] 

f(x) f’(x) 
nx  1−nax  

axsin  axa cos  
axcos  axa sin−  
axtan  axa 2sec  

axe  axae  
axln  

x
1  

axsinh  axa cosh  
axcosh  axa sinh  

 
3.2 Differentiation of products – “product” rule 

e.g. xxxf 3cos)( 5=  

Let 5)( xxu = , xxv 3cos)( =  
)()()( xvxuxf =∴  

From first principles: 
( ) ( )







∆

−∆+
→∆

=
x

xfxxf
x

xf
0

lim
)(  

Take top line 
( ) ( )

( ) ( )[ ] ( )[ ] )()()(
)()()()()()()()(

)()()()(

xvxvxxuxvxxvxxu
xxuxvxvxxuxvxuxxvxxu

xvxuxxvxxuxfxxf

−∆++−∆+∆+=
∆+−∆++−∆+∆+=

−∆+∆+=−∆+
 

So now: 
( ) ( )[ ] ( )[ ]







∆

−∆++−∆+∆+
→∆

=
x

xvxvxxuxvxxvxxu
x

xf )()()(
0

lim
)('  

)()(')(')()(' xvxuxvxuxf +=  - 3.6 
 
Extending to three functions: 

)()()()( xwxvxuxG =  
)(')()()()(')()()()(')(' xwxvxuxwxvxuxwxvxuxG ++=  - 3.7 

 
3.3 Function of a function – ‘Chain’ rule 

e.g. )(13)( 2 xuxxf =+=  

Here 13)( 2 += xxu , the square root operates on v(x) 
Since ∆f, ∆x, ∆u are small 

x
u

u
f

x
f

∆
∆

∆
∆

=
∆
∆  - 3.8 

When ∆f, ∆x and ∆u  0 
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dx
du

du
df

dx
df

=  - 3.9 

 
3.4 Implicit Differentiation 

So far only differentiated functions of the form y=f(x) 
f(x,y)=constant 
Differentiating this is called implicit differentiation. 

 Differentiate both sides and use the chain rule 

- Collect terms to find 
dx
dy  

e.g. equation of a circle f(x,y)=C 

( )

2

2

22

22

4

022

02

4

4

x

x
dx
dy

y
x

dx
dy

dx
dyyx

dx
dyx

dx
dyx

dx
d

yx

−

−
=

−=

=+

=+

=+

=+

 

Check using explicit function ( ) 2
122 44 xxy −=−=  

( ) ( )
2

2
12

4
24

2
1

x

xxx
dx
dy

−

−
=−−=

−
 

 
3.5 Differentiating in terms of a parameter 

If )(txx =  and )(tyy =  

then 

dt
dx

dt
dy

dx
dt

dt
dy

dx
dy

==  - 3.10 

 
3.6 Logarithmic Differentiation 

If xay =  - take logs of both sides then differentiate. 

aaay
dx
dy

a
dx
d

y

ax
dx
dy

dx
d

axy
ay

x

x

lnln

ln1

lnln

lnln

==

=

=

=
=

 

 
3.7 Inverse function 

Uses: 

dy
dxdx

dy 1=  

 
3.8 Maxima, Minima of points of inflexion 
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When 0=
dx
dy  we have a stationary point. 

3 types: 

 

For a maximum, 0
2

2
<

dx
yd  

For a minimum 0
2

2
>

dx
yd  

For a point of inflexion 0
2

2
=

dx
yd  AND 

2

2

dx
yd  must change sign either side. 

 
3.7 Estimating small changes 

Remember ( )






∆

−∆+
→∆

==
x

xfxxf
xdx

dfxf )(
0

lim
)('  

For small steps )(' xf
x
y
≈

∆
∆  {We normally work with )(' xf

xδ
yδ
≈  

xδxfyδ )('=  
 
Example 3.10 

Estimate the increase in the surface area of a circle if its’ radius increases from 10cm to 
11cm. 
Surface area )(2 rAArπ ===  

20063.001.01.022

2)('

mxxπrδrπAδ

rπrA
dr
dA

==≈⇒

==
 

Check: ( ) ( ) 222 0066.01.011.0 mππA =−=∆  
Error is less than 5%. 
 

3.8 The Newton-Raphson method for numerically solving equations 
Some equations have no analytical solution, i.e. we can’t easily find the roots – in this 
case we need to guess the solution and improve on this guess until we get to the 
required accuracy. 

Maximum 

Minimum 

Point of inflexion
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− Make an initial guess, say xo 
− Find the gradient at xo f’(xo) 
− Find where f’(xo) cuts the x-axis – this is x1. 
− Repeat until accuracy as required. 

1

0 )(
)('

xx
xf

xf
o

o −
=  

 

)('
)(

01
o

o

xf
xfxx −=  

 
Example: Find a root of 0=−− xe x  
If x=0, f(x)=1 
If x=1, f(x)=-0.63 
Guess xo=0.5 

0000678.0)(

5671.0
)('
)(

5663.0
1
5.05.0

1)('

2

1

1
12

5.0

5.0

1

=

=−=

=
−−

−
−=

−−=

−

−

−

xf
xf
xf

xx

e
ex

exf x

 

 

y=f(x) 

f(x0) 

xo 

x1 

x 
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4. Series & Expansions 
Notation: 

Terms SumSuuuu nn ==++++ ...321 . Another expression is ∑
=

=
N

n
nn uS

1
. 

[Be careful: the counting index is often i, j, k, …] 
The series can be finite or infinite. 
 

4.1 Arithmetic Series 
The difference between each term is constant. 

( ) ( ) ( )( ) ( )

( ) ( )( )1
2
1

1...2

1

1

1

1

−=

+=−+++++++=

∑

∑
−

=

−

=

NNn

ndadNadadaaS

N

n

N

n
n

 

Write down Sn + Sn with the second one backwards. 
( ) ( ) ( )( ) ( )[ ] ( )[ ]
( )[ ] ( )[ ] ( )[ ]dnaadnaadnaa

adNadNadNadadaaSn

1...11
...211...22

−++++−+++−++=

++−++−++−+++++++=
 

N terms all the same. 
( )[ ]

[ ]termlasttermfirstNS

dnaaNS

n

n

..
2

12

+=

−++=
 

First term = a 
Last term = a+(N-1)d 
 
Or use: 

( )

( )

( )[ ]1
2

1
2
1

1
2
1

1

0

1

0

1

0

1

0

−++=

−+=+=+∴

−=

∑∑∑

∑
−

=

−

=

−

=

−

=

NdaaN

NNdNandanda

NNn

N

n

N

n

N

n

N

n

 

 
Example: sum all even integers between 0 and 500 (inclusive) 

( ) 750,625000251
2
12

250

0
=+=∑

=n
n  

(251 terms starting at 0) 
or: 

( ) 750,6222982250
2
1249

0
=++=∑

=n
 

(250 terms starting at 2) 
NB: Infinite arithmetic series always increase or decrease indefinitely  they diverge. 
 

4.2 Geometric series 
This is a series where each term differs from its’ predecessor by a common factor. 

∑
−

=

1

0

N

n

nax  Runs from axo  axN-1 (N terms) 

The sum of a geometric series is 












−
−

=∑
−

= x
xaax

nN

n

n

1
11

0
 - 4.3 

Proof: Write down sn then subtract xSn from it. 
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−
−

=

−=−

−=−

+++++=

++++= −

x
xS

xSx

xXSS

xxxxxxS

xxxS

N

N

N
N

N
NN

N
n

N
n

1
1

1)1(

1

,,,

...1
432

13

 

Infinite geometric series either diverges or converge. 

( )N
N

n

n x
Nx

a
x

xa
N

ax −
∞→









−

=





















−
−

∞→
=∑

∞

=
1

lim
11

1lim

0
 

If 1>x  the series does not converge, x>1 – diverge. x<-1 – oscillates. 

If 1<x  then 
X

aax
n

n

−
=∑

∞

= 11
 

Example 4.2 

a) ( )∑
=

6

0
2.0

n

n  b) ∑
=

5

0n

ne  

a) has 7 terms – N=7, x=0.2.  

( ) 248.1
2.01

2.0102
76

0
=

−
−

=∑
=n

n  

 
b) N=6, x=3 

364
31

312
65

0
=

−
−

=∑
=n

N  

 
4.3 The Binomial Expansion 

Used for function of the form (a+b)n. 
If n is a positive integer, then: 

( ) ( ) ( )( ) n
nn

nnn bbannnbannbnaaba ++
−−

+
−

++=+
−−

− ....
!3
21

!2
1 3322

1  - 4.5 

There are n+1 terms and its’ symmetrical about a and b. 
Special case when a=1  (1+x)n. (b=x) 

( ) ( ) ( )( ) nn xxnnnxnnnxx ++
−−

+
−

++=+ ...
!3

21
!2
111

32
 - 4.6 

( )∑
= −

=
n

i ni
n

0 !1!
!  Coefficient 

 
If x<<1, we can terminate the series when we have reached the required accuracy. 
 
( ) ( )88 01.0101.1 +≡  - may only need a few terms to get to the required accuracy. 
See examples sheets & workshops. 
 

4.4 Taylor (And Maclaurin) expansions 
− Used to get a series expansion for a function. 
− Very useful for approximating the function. 
− Function must be continuous, single-valued, and have derivatives up to f(n-1)x. 
 
[ ])(),...,(''),(' xfxfxf n  

Consider a polynomial n
no xaxaxaaxP ++++= ...)( 2

21  
If we let x=0 
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n
n

n
n

o

anP

anP

aP
aP

aP

!)0(

)!1()0(

!2)0(''
)0('

)0(

1
)1(

2

1

=

−=

=
=

=

−
−

 

We now want to approximate f(x) by P(x) [near to x=0] 

)0('')0(''
)0(')0('

Pf
Pf

=
=∴

 

The coefficients of P(x) are:- 

)0(
!

1)0(
!

1

!2
)0('

!2
)0('

!1
)0('

!1
)0('

)0()0(

)()0(

2

1

n
n

o

f
n

P
n

a

fPa

fPa

fPa

==

==

==

==

M

 

So, for x sufficiently close to 0, P(x) ~ f(x) and 

!
)0(...)0(''

!3
)0(''

!2
)0(')0()(

32

n
fxfxfxxffxf

nn
+++++≈  - 4.7 

This is the Taylor expansion of f(x) about x=0 – Maclaurin expansions / series (special 
case of the Taylor expansion around x=0) 
 
If we let the series become infinite, we might expect the approximation to become 
equality. 

 this may not be the case. 
- There will be a range of validity (a range of x) for which the Taylor series converges to 
f(x) 
Common Taylor expansions (about x=0) 

i. ...1
1

1 32 +−+−=
+

xxx
x

 [Valid –x<x<1] 

ii. ...
!3!2!1

32
++++=

xxxe x  [Valid for all x] 






 ++++== ...
!3

1
!2

1
!1
11,1 1ex  

iii. ...
!5!3

sin
53
−+−=

xxxx  [Valid for all x in radians] 

iv. ...
!4!2

cos
42
−+−=

xxxx  [Valid for all x in radians] 

v. ( ) ...
32

1ln
32
−+−=+

xxxx  [Valid for 11 ≤≤− x ] 

vi. ( ) ( ) ...
!2
111

2
+

−
++=+

xnnnxx n  [Valid for 11 ≤≤− x , any n] 

These are very useful for approximating functions. 
e.g. small angle approximation for sinx=x, when x<<1 
Can be used to determine the values of functions of seemingly indeterminate places. 

e.g. 
x

xsin  What is this when x=0? 
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...
!5!3

1
...

!5!3sin

!!!
0
0

0
0sin

42

53

++−=
++−

=

=

xx
x

xxx

x
x

 

When x=0 

1sin
=

x
x  (This is the same as L’Hopital’s rule we used in the workshop. 

 
4.5 Taylor series about points other than x=0 

x x-c You could do this substitution. 
Example 4.5 
In general, the Taylor series about a point x=c is 

( ) ( ) ...)(''
!2

1)('
!1
1)()( 2 +−+−+= cxcfcxcfxfxf  - 4.8 

This is the Taylor series. Remember the Maclaurin series 

( ) ( ) ...)0(''
!2

1)0('
!1
1)0()( 2 +++= fxfxfxf  about x=0. 
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5. Integral Calculus 
5.1 Antidifferentiation 

Consider: 

i) )(sin xfx
dx
d

=  - what is f(x)? 

ii) xxF
dx
d cos)( =  - what is F(x)? 

i) We know that f(x)=cosx, therefore we might assume that F(x)=sinx which is true! 
Therefore, sinx is an antiderivative of cosx. 
sinx+1 is also an antiderivative. 
 
What are the functions, f(x) whose gradient is always = cosx? 

Take another example: find y(x) if x
dx
dy 2=  

Try y=x2 

 
In general y=x2+c – there are an infinite number of antiderivatives. 

Formally F(x) is an antiderivative of f(x) if )()( xfxF
dx
d

=  - 5.1 

All the antiderivatives are given by F(x)+c 
Antiderivative ≡ indefinite integral 

 
5.2 Signed Area 

 

y=x2+1 

y=x2 

y=x2-1 

g=2x 

+ve area 

-ve area 

b a 

δA 

x x+δx 
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We want to work out the signed area contained under f(x) between a and v. The small 
area δx is very nearly a rectangle. 

)(

)(

xf
xδ
Aδ

xδxfAδ

=

≈
 

Let 0→xδ  and )(xf
xδ
Aδ
=  

Rewrite )()( xfxA
dx
d

=  Compare with 5.1 

Therefore A(x) is the antiderivative of f(x) 
kxfxA +=∴ )()(  

When x=a, A(a)=0, )(aFk −=∴  
From a to be the signed area is )()()( aFbFbAA −==  

Signed area [ ]baxFaFbF )()()( =−=  - 5.2 
 
Alternative method: 

 

Divide the integral between a and b into N equal steps so that 
N

abxδ −
=  

Therefore total area ∑∑
=

=

=

=
≈=

bx

ax

bx

ax
xδxfAδ )(  

As 0→xδ , the approximation becomes equality. 

∑
=

=→
=

bz

az
xδxf

xδ
A )(

0
lim

 - 5.3 

The brief notation is ∫∑ =
→

=

=

b

a

bx

ax
dxxfxδxf

xδ
)()(

0
lim

 - 5.4 

Equate 5/4 and 5.2 

[ ]ba
b

a
xFdxxf )()( =∫  - 5.5 

This is called the definite integral. 

∫ dxxf )(  is the indefinite integral. 
 

a b 
δA

δx 

f(x) 

x x+δx 

δA 
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5.3 Symmetric Integrals 
Take an odd function, where ( ) ( )tftf −=−  [e.g. t, t3, t5, atsin , attan , …] 
e.g. sint 

 
If we integrate about equal distances either side of the line of symmetry, the signal area = 
0. 

 0)( =∫−
c

c
dttf  - 5.6 

(for an odd function) 
Similarly for an even function ( ) ( )tftf =−  

∫∫ =
−

cc

c
dttfdttf

0
)(2)(  - 5.7 

(for an even function) 
 

5.4 Definite integrals with variable limits 

E.g. ∫=
x

c
dttfxI )()( , c is a constant. 

As always [ ] )()()()( cFxFtFxI x
c −==  

[Where F(t) is an antiderivative (indefinite integral) of f(t)] 

)()()()( xf
dx

xdFdttf
dx
d

dx
xdI x

c
=== ∫  

or 

)()( xfdttf
dx
d x

c∫  - 5.8 

We can also show )()( xfdttf
dx
d c

x
−=∫  - 5.9 

The general case:- 

dx
xduxu

dx
xdvxvfdttf

dx
d xv

xu

)())(()())(()(
)(

)(
−=∫  - 5.10 
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5.5 Standard Integrals 
f(x) ∫ dxxf )(  

nx  ( )1−≠n  
c

n
x n

+
+

+

1

1
 

axsin  
cax

a
+− cos1  

axcos  
cax

a
+sin1  

axe  
c

a
eax

+  

x
a  cxa +ln  

axsinh  
cax

a
+− cosh1  

axcosh  
cax

a
+sinh1  

 
5.6 Useful Hints 

5.6.1 Integrand = exact derivative 

cxfdx
xf
xf

+=∫ )(ln
)(
)(' – 5.11 

( ) cxfdxxfxf +=∫ 2)(
2
1)()(' – 5.12 

∫ += cxfdx
xf
xf )(2

)(
)(' – 5.13 

 

( ) )(')()(')(
2
2)(

2
1 2 xfxfxfxfcxf

dx
d

==






 +  as required. 

 
5.6.2 Integration using Partial Fractions 

Example 5.1 
Example 5.2 

NB: c
ax
ax

aaxax
dx

ax
dx

+
+
−

=
−+

=
−

∫∫ ln
2
1

))((22  

General rules for partial fractions: 

If we have a rational function 
)(
)()(

xQ
xPxf =  where P(x) and Q(x) are polynomials and 

the degree of p(x) < degree of Q(x), then Q(x) can be split into partial fractions as 
follows: 
a) Each term of the form (ax+b) gives a partial fraction 

)( bax
k
+

 

b) Each repeated term ndcx )( +  gives partial fractions 

n
n

dcx
L

dcx
L

dcx
L

dcx
L

)(
,...,

)(
,

)(
,

)( 3
3

2
21

++++
 

c) Each irreducible quadratic rqxpx ++2  gives a term 

( )rqxpx
NMx
++

+
2

 

Where k, Li, M and N are constants. 
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(See Jordan and Smith, examples 1.12 1.15) 
NB: If rqxpx ++2  has no real factors we complete the square and substitute – see 
next section. 
 

5.6.3 Integration by Substitution 
Steps to follow:- (Assuming ∫ dxxf )( ) 

i. Examine f(x) for suitable substitution 
ii. Use u=g(x) or x=h(u) where g and h ‘make up’ f(x) 
iii. Differentiate x=h(u) to get dx=h’(u)du or u=g(u) to get du=g’(x)dx 
iv. Perform the substitution (making sure the only variable is u) 
v. Do the integral 

 
5.6.3.1 Letting x=h(u) 

Example 5.3 
f(x) ∫ dxxf )(  Substitution 

22

1

xa −
 c

a
x

+






arcsin  
uax sin=  

22
1

ax +
 c

a
x

a
+







arctan1  
uax tan=  

22

1

ax +
 c

a
xh +






arcsin  
uax sinh=  

22

1

ax −
 c

a
xh +






arccos  
uax cosh=  

 
5.6.3.2 Completing the Square 

Example 5.4 
 

5.6.3.3 Integrals of the form ∫ dxxgxgF )('))((  

If we let u=g(x), dxxgdu )('=  

∫ ∫= )()('))(( uFdxxgxgF  
Jordan and Smith only use two examples of this form:- 

∫
∫

+

+

xdxbaxf

dxbaxf

)(

)(
2

 

Example 5.5 
 

5.6.3.4 Integrals of the form ∫ axdxax mn cossin  
Where n and m are odd (sometimes even) ± integers. 
Rules 

If n+m is odd, choose either:- 

∫∫ −= axdxaxaxaxdxax mnmn sincossincossin 1  and use axu cos=  (if n is odd) 
or: 

∫∫ −= axdxaxaxaxdxax mnmn coscossincossin 1  and use axu sin=  (if m is odd) 
The aim is to get m-1 or n-1 even. 
If n+m is even use either method. 

Example 5.6 
Example 5.7 

 
5.6.4 Integration by Parts 

Remember the product rule in differentiation. 
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( )
[ ]vuuvuv

dx
xduxv

dx
xdvxuxvxu

dx
d

'')'(

)()()()()()(

+=

+=
 

Integrate both sides 

cdx
dx
duvdx

dx
dvuuv ++= ∫∫  

Rearranging: 

cdx
dx
duvuvdx

dx
dvu +−= ∫∫  5.14 

Example 5.8 
Aside: 
How do we integrate ∫ xdxln ? 

xv
dx
dv

xdx
duxu

xdxxxdx

==

==

=∫∫

,1

1,ln

ln1ln

 

Example 5.9 
Example 5.10 
 

5.6.5 Reduction formulae 
Show by example. 
Example 5.11 
Specific example: 

∫∫ −−
=

2

0

2
2

0
sin1sin

π

m

π

m xdx
m

mdx – 5.15 

If m=6 

22
1

4
3

6
5

2
1

4
3

6
5sin

2
12

4
14

6
16sin

6
16sin

2

0

2

0

0
2

0

4
2

0

6 πdxxdxxdxdx

ππππ

==






 −







 −







 −
=

−
= ∫∫∫∫  

In a similar way we can show: 

∫∫ −−
=

2

0

2
2

0
cos1cos

π

m

π

m xdx
m

mdx – 5.16 

 
Another example: 

∫∫∫
∞

−−
∞

−−
∞

− −==
0

2

0

1

0
)1( dtteNNdtteNdtte NtNtNt  

[ ] 10
0

0 =−=
∞−

∞
−∫ tt edtte  

 

!)...2)(1(
0

NNNNdtte Nt =−−=∫
∞

− – 5.17 

 
5.7 Simple Line Integration 
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We call the distance along the line ∆s. 
When ∆x, ∆y, ∆s are small 

( ) ( )22 yxs ∆+∆=∆  
Divide through by ∆x 

( ) ( ) ( )
( )

( )
( ) dx

ds
dx
ds

x
y

xx
s

x

x
yyx

xx
s

=+=
∆

∆
+

→∆
=

∆
∆

→∆
∴

∆

∆
+≈∆+∆

∆
≈

∆
∆

2

2

2

2

2
22

11
0

lim
0

lim

11

 

 
2

1
dx
ds

dx
ds

+=  5.18 

 
To find the length of the curve between x=a and x=b, integrate both sides of 5.18 

∫∫ +==
a

b

a

b
dx

dx
dssdx

dx
ds 2

1  5.19 

 
Example 5.12 

Find the length of the curve 2
3

xy =  between x=0 and x=3. 

2
1

2
3 x

dx
dy

=  

4.5
9
4

3
2

4
91

4
91

4
91

1

3

0

2
1

3

0

2
1

3

0

3

0

2

=




















 +=








 +=+=








+=

∫∫

∫

xs

dxxdxxs

dx
dx
dys

 

(Wrong in worked example) 
In general for a line integral we integrate along a (defined) curve in space and the 
integrand is a function defined at all points. 
This is denoted by: 

∫
C

dszyxf ),,(  5.20 

where C is the path of integration, and ds is the parametric variable. 
Example 5.13 

y=f(x) 

∆s ∆y 
∆x 

y 

x
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In the x,y plane a function varies as f(x,y)=xy3. Find the line integral along the path y=2x 
between points A=(-1,-2) and B=(1,2). 
We want to evalulate ∫

C
dsxy 3 . 

We now need ds in terms of x or y (and hence dx or dy) 

Choose x, we know that 
2

1 






+=
dx
dy

dx
ds  from 5.18. 

( )

∫∫
−

=∴

=+=∴

==





















+=

1

1

43

2
1

2
1

2

85

541

2,2

1

dxxdsxy

dxdxds

dx
dyxy

dx
dx
dyds

C

 

(Substituting y=2x) 

[ ]
5

1611
5

58
5

58
1

1

5
=+=












=

−

x  

 
5.8 Integrating in polar coordinates 

In plane polars we describe the function, )(θfr =  

 
The incremental area, Aδ , is a narrow circular sector of radius r and angle δθ. 
δθ is a fraction of the full circle. 

∫∑ =
→

=

==∴

=

=

β

α

βθ

αθ
θdrδθr

δθ
A

δθrAδrπ
π
δθ

22

22

2
1

2
1

0
lim

2
1

2
  

Example 5.14 
Find the area of a circle of radius 2. 
(We know πrπA 42 == ) 

[ ] πθθdθdrA

θfr

π
ππ

42
2
1

2)(

2
0

2

0

2

0

2 ====∴

==

∫∫
 

 
5.9 Selected Applications of Integration 

5.9.1 Centre of Mass 
Suppose we have N particles of mass mn with positions (xn,yn), n=1,2,…,N 

r 

θ 

y 

xδxfAδ )(=

Aδ
δθ
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The balancing point is the point such that the total momentum about that point is zero. 
Take x and y directions separately. 

( ) 0
1

=−∑
=

n

n
nn xxm  5.22 

( ) 0
1

=−∑
=

n

n
nn yym  5.23 

0
11

=− ∑∑
==

n

n
n

n

n
nn mxxm  5.24 

0
11

=− ∑∑
==

n

n
n

n

n
nn myym  5.25 

Total mass ∑
=

=
N

n
nmM

1
 

Take 5.24 ∑
=

=
N

n
nnmx

M
x

1

1  5.26 

∑
=

=
N

n
nnmy

M
y

1

1 5.27 

 
Assume a plate of uniform thickness and hence uniform mass/area, µ (kg.m-2) 

 
The length of the strips are V(x) and H(y). Therefore, the mass of a strip = xδxVµ )(  
and yδyHµ )(  

From 2.22 

( )

∴

=
→

=
→

∴

=−
→

∑∑

∑
=

=

=

=

=

=

AxµdxxVµx
xδ

dxxVµx
xδ

xδxVµxx
xδ

bx

ax

bx

ax

bx

ax

)(
0

lim
)(

0
lim

0)(
0

lim

 

where A= ∑
=

=→

bx

ax
dxxV

xδ
)(

0
lim

 

),( yx  

d 
y 

b 
x 

a 

c δx 

δy

V(x) 

H(y) 
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∫=
b

a
dxxxV

A
x )(1 – 5.28 

∫=
d

c
dyyyH

A
y )(1 – 5.29 

 
5.9.2 Moment of Inertia 

Moment of inertia is important for circular motion. It is similar to mass for linear motion. 
Normally given the symbol I. 
Energy in linear system = ½mv2 
Energy in a circular frame = ½Iw2 

Momentum: mv, Iw. 
The moment of inertia of a mass m about an axis is mr2 where r is the perpendicular 
distance between the axis and the mass. 

 
Example 
Find the moment of inertia of a uniform rectangular plate ABCD about the edge AB, 
where AB=2, BC=6, mass/area=2 

 
Area of the shaded rectangle = 2δx. 
Mass of shaded rectangle = 4δx 
   δm=4δx 
   δI=4x2δx 

288
3

444
0

lim
0

lim
6

0

36

0

2
6

0

2
6

0
=












==

→
=

→
= ∫∑∑

=

=

=

=

xdxxxδx
xδ

Iδ
xδ

I
x

x

x

x
 

axis 

r

µ 

A 

B 
C

D

6 

2 
x 

δx 
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6. Differential Equations 
6.1 Introduction 

If )(xfy = , then any equation having some or all of the terms x, y, 
n

n

dx
yd

dx
yd

dx
dy ,...,,

2

2
 is 

called an ordinary differential equation (ODE) 
The order of an ODE is the highest derivative involved. 
Eg: 

2y
dx
dy

=  First order 

02sin
2

2

4

4
=++ y

dx
ydx

dx
yd  Fourth order 

12
3

+=






 x
dx
dy  First order 

 
An ODE of order n has n linearly dependant solutions which form a basis of solutions. 
 
Example 6.1 

x
dx
dyy −=  (First-order) 

To solve, integrate directly. 

Axy

xdxydy

xdxdx
dx
dyy

+−=

−=

−=

∫∫

∫∫

22

22

 

This is called the general solution. 
Therefore, the solution is a set of circles of radius A . 
If we know some initial conditions or boundary conditions, we can pin down a specific 
solution. This is called an initial value problem. 
E.g. if y=4 when x=0, A=8. 

Therefore specific solution is 8
22

22
=+

xy . 

 
6.2 1st order ODE’s 

i.e. of the form ),( yxf
dx
dy

= – 6.1 

 
6.2.1 1st order separable ODE’s 

In this case )()( yhxg
dx
dy

= – 6.2 

To solve we separate the function f(x,y) into g(x) and h(y). 
We can now integrate directly. 
 

∫∫ = dxxg
yh

dy )(
)(

– 6.3 

 
Example 6.2 (a, b & c) 

a) 2y
dx
dy

−=  y=1 when x=0 

In this case 1)(,)) 2 =−= xgyyh  
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1
1

11,0

1

1

2

+
=∴

=→==
+

=

+=

=∴ ∫∫

x
y

cyx
cx

y

cx
y

dy
y
dy

 

 

b) )1( yxxyx
dx
dy

+=+=  

1

1

2
1ln

1

1)(,)(

2

222

2

2

222

−=

===+

+=+

=
+

+==

+

∫ ∫

x

x
c

xcx

Aey

Aeeeey

cxy

xdx
y

dy
yyhxxg

 

 

c) ( ) )1(1 22 −=+ xy
dx
dyyx  

( )
( )

( ) ( )

c
x

xy
y

dy
xx

dy
yy

dx
x

xdy
y

y
x

x
y

y
dx
dy

++=+−








 −=









+

−
=

+

−
+

=

∫∫

∫∫

1lnln1

1111

11

1
1

22

22

2

2

 

 
Summery of method: 
− Factorise the equation to get g(x)h(y) 
− Separate to get g(x) and h(y) on different sides. 
− Integrate directly to get general solution (with constant) 
− If initial value problem, evaluate the constant to get the specific solution. 
 
Example 6.3 

Newton cooling 
An object at temperature T in ambient air at temperature To, satisfies the equation 

( )oTTk
dt
dT

−−=  (h(T)=(T-To), g(t)=-k) 

o
kt

ktckt
o

o

o

TAeT

AeeTT

cktTT

dtk
TT

dT

+=

==−

+−=−

−=
−

−

−+−

∫∫
ln  
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If air temperature = 40oC, object is at 100oC when t=0 
100=A+40  A=60 

4060 += −kteT  Specific solution. 
If the temp is 85oC after 3 minutes 

096.0
375.0ln

60
45

406085

3

3

=
−=

=

+=

−

−

k
k

e

e

k

k

 

(In minutes) 
 
6.2.2 1st Order Linear ODEs 

A linear ODE is one with no squares (etc) or products involving y and its derivatives. 
They have the form:- 

( ) ( )xQyxP
dx
dy

=+ – 6.4 

E.g.:- 

x
xy

dx
dy

+
=+

1
1sin2  - linear. 

0
2

=+






 y
dx
dy  - non-linear 

1=+ x
dx
dyy  - Non-linear 

These linear equations can be solved using an integrating factor, I(x) 

Take ( ) ( )xQyxP
dx
dy

=+  

Multiply through my I(x) 

QIIPy
dx
dyI =+  - 6.5 

If we choose I(x) so that 
( ) IPy

dx
dyI

dx
Iyd

+=  - 6.6 

( ) QI
dx
Iyd

=∴  - 6.7 

Integrate both sides. 
( )

∫
∫∫

=

=

QIdxIy

QIdxIyd
 

Or 

( ) ( )∫= dxxIxQ
xI

y
)(

1  - 6.8 

All that remains is to find I(x). 
Expand left hand side of 6.6 
( )

dx
dIIP

IPy
dx
dyI

dx
dIy

dx
dyI

dx
Iyd

=

+=+=
 

This is a separable ODE. 

∫

∫∫

=

=

PdxI

Pdx
I
dI

ln
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( ) 




= ∫ dxxPI exp  - 6.9 

 
Summery: 

− Find the integrating factor ( ) 




= ∫ dxxPI exp  

− Rewrite as ( ) IQ
dx
Iyd

=  

− Integrate to get ( ) ( )∫= dxxQxI
xI

y
)(

1  

[Remember the constant of integration] 
− Use any initial conditions to find specific solution. 
 
Example 6.4 
Example 6.5 
 

6.2.3 Bernoulli’s Equations 

( ) ( ) 1,0, ≠=+ nyxQyxP
dx
dy n  - 6.10 

Rearrange:- 

( ) ( )xQxP
ydx

dy
y nn

=+
−1

11  

And now substitute nyu −= 1   ( )
dx
dyyn

dx
du n−−= 1   ( ) dx

du
ndx

dy
y n −

=
1

11  

Therefore Bernoulli’s equation becomes:- 

( ) )()(
1

1 xQuxP
dx
du

n
=+

−
 

or: 

( ) ( ) ( ) ( )xQnuxPn
dx
du

−=−+ 11  - 6.11 

Therefore the integrating factor is ( ) ( ) ( ) 




 −= ∫ dxxPnxI 1exp  

Example 6.6 

Solve 432 yx
x
y

dx
dy

=+  

( ) ( ) 4,2,1 43 =→=== nyyxxQ
x

xP n  

Substitute 
dx
dyy

dx
duyyu n 431 3, −−− −===  

3
34

211 x
xydx

dy
y

=+∴  

From 6.11 (or by rearranging) 
363 x

x
u

dx
du

−=−  

Integrating factor 

( ) ( ) ( ) ( ) 33lnexpln3exp3expexp −− ==−=






 −
=





= ∫∫ xxxdx

x
dxxPxI  
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( ) ( )
( )

334

3

333

3

6

6

66

6

−

−

−−

=+−=

+−=

−=−=

−==

∫∫

ycxxu

cxux

dxdxxeux

xIIQ
dx
Iud

 

( ) 31346
−

+−= cxxy  
 

6.2.4 Clever substitutions 
Example 6.7 

Solve ( )xQyx
dx
dyy =+ tansec 2  

Substitute 
dx
dyy

dx
dwyw 2sec,tan ==  

Therefore the ODE becomes ( )xQxw
dx
dw

=+ , which is linear in w. 

 
Another useful trick:- 

( )cbyaxf
dx
dy

++=  - 6.12 

If we substitute cbyaxu ++=  then
dx
dyba

dx
du

+= . Therefore the ODE becomes:- 

( )ubfa
dx
dyba

dx
du

+=+=  

( )ubfa
dx
du

+=  - 6.13 

which is separable. 
 
Example 6.8 

Solve ( )21++= yx
dx
dy  

Therefore 1=== cba  

( )
cxu

dx
u

du

u
dx
dy

dx
du

dx
dy

dx
dyyxu

+=

=
+

+=+=∴

+=→++=

−

∫ ∫
1

2

2

tan

1

11

11

 

( ) cxyx +=++− 1tan 1  
 
Homogenous ODE is of the form: 








=
x
yf

dx
dy  - 6.14 

Solve by substitution ( )xxvy
x
yv == ,  

so that ( )
dx
dvxxv

dx
dy

+=  

Therefore 6.14 becomes 
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( )

( ) vvf
dx
dvx

vf
dx
dvxv

−=

=+
 

which is separable. 

( )∫ ∫=
− x

dx
vvf

dv  

If ( )
( )yxg

yxf
dx
dy

,
,

=  and ( )yxf ,  and ( )yxg ,  homogenous and of the same degree the ODE 

is still homogenous – use the same substitution. 
A function is said to be homogenous of degree m if ( ) ( )yxfkkykxf m ,, =  - 6.15 
 
Example 6.9 
 
Summery of solving 1st order ODE’s by substitution 

1. Check to see if it is linear in a function y – solve as linear ODE 

2. ( )cbyax
dx
dy

++=   substitute cbyaxv ++=   the ODE becomes separable. 

3. If the ODE is homogenous, i.e. 






=
x
yf

dx
dy  substitute ( )xxvy =   separable 

4. Equations of the form ( )
( )yxg

yxf
dx
dy

,
,

= homogenous if f and g are of the same degree 

 substitute ( )xxvy =  
 

6.3 Second Order ODE 

mg
dt

zd
=

2

2
 If we integrate twice cmgt

dt
dz

+= , 21

2

2
ctcmgtz ++=  

There are two constants requiring 2 initial conditions. 
 
6.3.1 Special Cases 

The general form of a 2nd order ODE is:- 








=
dt
dytyf

dt
yd ,,
2

2
 - 6.16 

 
If y is absent 








=
dt
dytf

dt
yd ,
2

2
 

This is now a 1st order ODE in 
dt
dy  

Substitute 
dt
dyv = . Our ODE becomes ( )vtf

dt
dv ,  

Therefore use the techniques of our last section. 
 
If t is absent 








=
dt
dyyf

dt
yd ,
2

2
 

Again substitute 
dt
dyv =  v

dy
dv

dt
dy

dy
dv

dt
dv

dt
yd

===
2

2
 

Therefore the ODE becomes:- 

( )vyf
dy
dvv ,=  



PC 1071 – Mathematics for Physicists  Semester 1 

39 

This is now a 1st order of v in terms of y. 
 

If both t and dtdy  are absent: 

( )yf
dt

yd
=

2

2
 

Use 
dt
dy  as an integrating factor. 

Multiply through by 
dt
dy  

( )

( )
dt
dyyf

dt

dt
dyd

dt
dyyf

dt
dy

dt
yd

=






















=

2

2

2

2
1  

Integrate both sides: 

( ) .
2
1 2

constdyyf
dt
dy

+=







∫  

 
6.4 2nd Order ODEs with const. coefficients 

The general form is: 

( )tfya
dt
dya

dt
yd

=++ 212

2
 - 6.17 

If we set 0)( =tf  so that 0212

2
=++ ya

dt
dya

dt
yd  and find ( )ty c  a solution. 

If we substitute this into the ODE we get 0  

Then find a solution for the full ODE ( )ty p  
( ) ( ) ( )tytyty pc +=  
( )ty c  is the complimentary function (CF) 
( )ty p  is the particular integral (PI) 

The complete solution is the sum of the CF and the PI. 
 
6.4.1 Finding the CF 

The CG is the solution of the auxiliary equation (or homogenous equation) 

0212

2
=++ ya

dx
dya

dx
yd  - 6.18 

Try a solution xλAey =  

0

,

21
2

2
2

2

=++

==

xλxλxλ

xλxλ

AeaAeλaAeλ

Aeλ
dx

ydAeλ
dx
dy

 

021
2 =++ aλaλ  - 6.19 

Therefore we can find λ  by solving the quadratic equation. 
There are three possibilities: 
1. The roots are real and independent 1λ  and 2λ  
2. The roots are real and identical, 1λ  
3. The roots are complex βiαλ ±=  
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1. Roots are real and distinct 

xλ

xλ

eAy

eAy
2

1

22

11

=

=
 

Therefore ( ) xλxλ
x eAyeAxy 21

221 =+=  6.21 
2. Roots are real and identical 

( ) ( ) xλ
c eAxAxy 21 +=  - 6.21 

(Left as exercise to prove by substitution) 
3. Roots are complex, βiαλ ±=  

( ) ( ) ( )

( )
( )

( )φxβCe

xβBxβBe

eAeAe

eAeAxy

xα

xα

xβixβixα

xβiαxβiα
c

+=

+=

+=

+=
−

−+

cos

sincos 21

21

21

 

where φ  is a constant. 
(Remember 1.4, harmonic function 

( ) 






 −=+=+=+
a
bφbacφucubya tan,,coscoscos 22 ) 

 
Example 6.11 
 

6.4.2 Finding the Particular Integral (PI) 
The form of the PI depends on the form of f(x) 

( )











=++ xfya

dx
dya

dx
yd

212

2
 

 
Use the following rules: 
1. If ( ) xaexf α= , try ( ) x

p bexy α=  
2. If ( ) xaxaxf αα sincos 21 +=  (a1 or a2 could be zero), try 

( ) xbxbxy p αα sincos 21 +=  

3. If ( ) n
no xaxaxaaxf ++++= ...2

21  try ( ) n
nop xbxbxbbxy ++++= ...2

21  
4. If ( )xf  is a sum or product of any of the above, try ( )xy p  as the most general sum or 

product of the individual trial solutions. 
5. If the trial solution contains any terms already in the CF, multiply the trial PI by x and 

try again. 
 
We then substitute the PI into the full ODE to evaluate the constants. 
 
The compete solution of the full ODE is the sum of the CF and PI. 
 

Summary: 
− Write down the auxiliary equation 
− Find the CF containing 2 arbitrary constants 
− Choose a trial form of the PI depending on f(x) 
− Check to see no terms are common in PI and CF 
− If terms are common multiply the PI by x 
− Substitute the PI into the full ODE to evaluate the coefficients.  
− Write down the full solution = CF + PI. 
− Use any initial conditions to evaluate the constants. 
 
Example 6.12 
Next example is where the PI has a term in the CF. 
Example 6.13 
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7. The Harmonic Oscillator 
7.1 Unforced, Undamped Oscillator 

In Simple Harmonic Motion (SHM), the restoring force is proportional to the displacement. 
i.e. kxF −=  or: 

kx
dt

xdM −=
2

2
 - 7.1 

 0
2

2
=+ kx

dt
xdM  or 0

2

2
=+ x

m
k

dt
xd  

Common to write 2
om

k ω=  

Therefore 02
2

2
=+ x

dt
xd

oω  - 7.2 

Or 02 =+ ox ω&&  
Therefore thee auxiliary equation is:- 

( ) ( )titi
c

o

o

oo eAeAetx

i
ωω

ωλ
ωλ

=+=

±=

=+

21
0

22 0
 

or ( ) tBtBtx ooc ωω sincos 21 += . 
 

7.2 Now let’s add a forcing term – the forced oscillator 
( )tFxx o =+ 2ω&&  - 7.3 

F(t) is the forcing or driving term, and is time-dependant. 
Let’s use ( ) tFtF o ωcos= . 

Therefore tFxx oo ωω cos2 =+&&  
The CF is ( ) tBtAtx ooc ωω sincos +=  
Let’s use ( ) tbtatx p ωω sincos +=  
This is fine so long as oωω ≠  otherwise we must multiply the PI by t. 
 
Case 1, oωω ≠  

( )
( )
( ) tbtatx

tbtatx

tbtatx

p

p

p

ωωωω

ωωωω

ωω

sincos

cossin

sincos

22 −−=

+−=

+=

&&

&  

Substitute into the ODE 
( )

( ) ( )

( )22

2222

222

,0

cossincos

cossincossincos

ωω

ωωωωωωω

ωωωωωωωω

−
==∴

=−+−

=++−−

o

o

ooo

oo

F
ab

tFtbta

tFtbtatbta

 

The complete general solution is:- 

( ) ( ) t
F

tBtAtx
o

o
oo ω

ωω
ωω cossincos

22 −
++=  - 7.4 

tBtA oo ωω sincos +   Free response 

( ) tF

o

o ω
ωω

cos
22 −

  Forced response 
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Case 2, oωω =  
Now we need to multiply the PI by t. 

( ) ( )
( ) ( )
( ) ( )

( ) ( )tbtattbta

tbtattbtatbtatx

tbtattbtatx

tbtattx

oooooooo

oooooooooooop

oooooop

oop

ωωωωωωωω

ωωωωωωωωωωωω

ωωωωωω

ωω

sincoscossin2

sincoscossincossin

cossinsincos

sincos

22

22

−−++−=

−−++−+−=

+−++=

+=

&&

&

 
Substituting into the ODE gives:- 

( ) tt
F

tx

F
ba

o
o

o
p

o

o

ω
ω

ω

sin
2

2
,0

=

==

 

Therefore complete solution is:- 

( ) t
F

tbtatx o
o

o
oo ω

ω
ωω sin

2
sincos ++=  - 7.5 

tbta oo ωω sincos +   Free response 

tF
o

o

o ω
ω

sin
2

  Driven response 

We therefore see that the second tem increases with time – theoretically to infinity. 
In reality there will be some damping. 

 
7.3 Damped oscillator – No forcing term 

( ) ( ) 02 =++ xtxtx oωγ &&&  

Damping
dt
dx

∝  

Auxiliary equation is: 
02 22 =++ oωγλλ  

Roots 22
22

2
442

o
o ωγγ

ωγγ
λ −±−=

−±−
=  

Three cases:- 
1. 22

oωγ >  - Roots are real and negative 

2. 22
oωγ =  - Roots are real, coincidental and equal to γ−  

3. 22
oωγ <  - Roots are complex, 22 γωγλ −±−= oi  

 
Case 1, 22

oωγ >  - Heavy Damping 

( ) tt
c BeAetx 21 λλ −− +=  - 7.7 

i.e. there is no oscillation, the amplitude simply decays exponentially. 
 

Case 2, 22
oωγ =  - Critical Damping 

The roots are coincident, real and equal to γ−  

Therefore ( ) ( ) t
c eBAttx γ−+=  - 7.8 

Again no oscillation, but depends on A and B. 
e.g. ( ) ( ) t

c ettx 312 −+=  
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or ( ) ( ) t

c ettx 315 −+−=  

 
Case 3: 22

oωγ <  

22

22
2,1

γωγ

ωγγλ

−±−=

−±−=

o

o

i
 

Remember if βαλ i±=  

( ) ( )

( )







 +−=















 −+






 −=∴

+=

−

−

φγω

γωγω

ββ

γ

γ

α

tCe

tBtaetx

tBtAetx

o
t

oo
t

c

t
c

22

2222

cos

sincos

sincos

 

Therefore the solution oscillates at frequency 22 γω −o  and not oω . 
Also the amplitude decays exponentially. 

t

 
x(t) 

t

 x(t) 
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7.4 Damped, Forced Oscillator 

( ) ( ) ( ) ( ) { }ti
ooo eFtFtFtxtxtx ωωωγ Recos2 2 ===++ &&&  - 7.10 

This time we are going to find the particular integral using complex exponentials. 
As always, we can use complex variables in place of our real ones, as long as we 
remember to take the real part at the end. 
Our ODE becomes: 
( ) ( ) ( ) ti

oo eFtXtXtX ωωγ =++ &&& 2  
Where X(t) is a complex variable and ( ) ( ){ }tXtx Re=  

Now our trial solution is ( ) ti
p CetX ω= , where C is a complex coefficient. 

( )
( ) ti

p

ti
p

CetX

CeitX
ω

ω

ω

ω
2−=

=

&&

&
 

Substitute into the ODE: 

( )

( )22

22

22

2

2

2

ωωγω

ωγωω

ωωγω ωωωω

−+
=

=++−

=++−

o

o

oo

ti
o

ti
o

titi

i

F
C

FiC

eFCeCeiCe

 

Get into standard form by multiplying top and bottom by the complex conjugate  
( )222 ωωγω −+− oi  

( )( )
( ) 22222

22

4

2

ωγωω

γωωω

+−

−−
=

o

oo iFC  - 7.12 

Therefore our CF is  

( ) ( )( )
( )

( )( )
( )

( )tit
iF

e
iF

tX
o

ooti

o

oo
p ωω

ωγωω

γωωω

ωγωω

γωωω ω sincos
4

2

4

2
22222

22

22222

22

+
+−

−−
=

+−

−−
=  

We want ( ) ( ){ }txtx pp Re=  

( )
( )

( )[ ]tt
F

tX o

o

o
p ωγωωωω

ωγωω
sin2cos

4

22

22222
+−

+−
=  - 7.13 

Our complete solution is the sum of the CF and the PI. 
Note all the CFs decay away with time – these are known as transients. 
In the long term only the forced solution exists. 
Back to Xp(t): 
This is a harmonic function of the form:- 

( )φ+=+ ucubua cossincos  

where 






−=+=
a
bbac arctan,22 φ  

x 

t 

te γ−

φ  
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( )
( ) 22222

22

4

2,

ωγωω

γωωω

+−=∴

=−=

o

o

c

ba
 

( )
( )

( )φω
ωγωω

+
+−

=∴ t
F

tx

o

o
p cos

4 22222
 - 7.14 

where 














−

−
=

22
2arctan

ωω

γωφ
o

 - 7.15 

When is the amplitude a maximum? 

Max when ( ) 22222 4 ωγωω +−o  is a minimum. 

Let ( ) ( ) 22422422222 424 ωγωωωωωγωω +−−=+−= ooowg  
Differentiate and set to zero 

( ) 0844 232 =++−= ωγωωω
ω
ω

od
dg  

222 2γωω −=⇒ o  - 7.16 

or 22 2γωω −= o  
This is known as the resonance condition. 
Remember γ  is the damping. 
Note that without damping, resonance is when oωω = . 
Substitute this resonance condition into 7.14 and the amplitude will be:- 
7.14 is ( ) ( )φω += tAtxp cos  

( )
( )

( )φω
γωγ

+
−

= t
F

tx
o

o
p cos

2
2122

 - 7.17 

 
ωo

γ large 

γ small 

γ=0 

A 
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πφ −  

2/π−  

( )αφ arctan=

0=γ

oω
ω 

0>γ


