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Flat, uniformly rotating systems 
Infinite fluid sheet with zero thickness, constant surface density ! , and constant 
angular momentum !

z
. 

 
In a rotating coordinate frame, 
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(Assume that centrifugal force is balanced by gravity, and v
0
= 0 ) 
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Equation of state: 
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Poisson equation: 
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The solution we’re after is: 
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(Don’t use this – use the later one) 
 
NB: Velocity v

1
= x, y,t( ) = v
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Doing an integral over z, such that we’re looking at positions just above and below z  
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(We now have a kz  in the !
1
 exponential – this is a “calculus fiddle”.) 

 
Poisson’s equation requires: 
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with as solution the dispersion relation 
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The gravity term will provide instability, while the !2  term provides support – so 
overall the disk is stabilized. 
 
Three cases: 

1. If ! = 0 , sheet is unstable for k < k
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2. If in addition v
s
= 0 , sheet is violently unstable at all ! . 

3. Rotation and pressure stabilize the sheet if 
v
s
!
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Equivalent result for razor-thin stellar sheet: stability requires 
!"

G#
0

$ 1.68  

Finite thickness in z  reduces the required !  (velocity distribution). 
 
Conclusions 

1. A cold sheet is violently unstable 
2. A minimum sound speed or velocity dispersion can stabilize the sheet 
3. Fluid and stellar sheets behave very similarly. 

 
Spiral Arms 
Properties: 

- Typically 2 arms, starting at opposite sides of the nucleus 
- Grand design: global pattern 
- Later spirals have irregular arms, local patterns 
- Barred spiral arms: arms attach to opposite ends of the bar 
- M51 spiral arm attached to a small companion galaxy 
- Arms are clearest in young (blue) stars and interstellar gas 
- Galaxies without gas show no spiral arms 

 
Parameters: 

m : The shape is invariant under rotation under 
2!

m
 radians. 

Can talk about m ! fold symmetry, mostly m = 2  but sometimes m = 3 . 
m  spiral arms (usually) 

i : pitch angle i  at radius r  is the angle between the tangent to the arm and the 
tangent to the circle r = const . By definition 0 < i < 180° . 
Observations show i  in the range 5 ! 20° . 

 
Arms appear to be trailing the rotation, not leading. 
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Winding dilemma 
Differential rotation destroys the arms. Take a linear, radial structure in disk galaxy: 
! R( ) = !

0
. Let the structure rotate with the stars. At time t ,  
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For small i  and radial inter-arm spacing !R << R , 
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For our galaxy, !R = v
c
= 220km s

"1 , R = 10kpc , t = 1010 yrs : 
i = 0.25° , !R = 0.28kpc  

Predicts a much tightly wound spiral structure (by around a factor of 10). 
 
Solutions to the Winding Dilemma: 

1. Arms have a very short life span but continuously reform 
2. Temporary phenomenon due to sudden violent disturbance 
3. Detonation of star formation: forest fire model 
4. Density wave following an enhancement to the gravitational potential 

 
Kinematic density wave 
Stellar orbit with radial period T

r
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angular sped !p  (“pattern speed”). 
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where we used the epicycle 
approximation: !

c
 is the circular 

angular speed and !  is the 
epicycle frequency. 
 
The orbit closes after m  radial 
oscillations. The pattern formed 
by these orbits is stationary in the 
rotating frame, or rotating at !p  
for a stationary observed. 
!

p  is the pattern speed. 


