PC4992 — Galactic Dynamics — Lectures 17 & 18

Flat, uniformly rotating systems
Infinite fluid sheet with zero thickness, constant surface density X, and constant
angular momentum £2_.

In a rotating coordinate frame,
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(Assume that centrifugal force is balanced by gravity, and v, =0)
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Equation of state:
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Poisson equation:

V@ = 41GZ5(z)

VO, =47GZ,8(z) (14)
The solution we’re after is:

O, = q)aei(kx—ﬂ”)—\kz\
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Forall z#0,
VO =k’®, - k’'®, =0=41GX,5(z)

If z=0,
V@ =-k’®, = 47GZ,
This means that we must still relate X, to ®,, or £, to @, (where X, =3 ) -
note that this naturally has no z dependence). For z=0,
~E® ) = 47 G M)
— —k’®_ =47GZ,
(Don’t use this — use the later one)
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NB: Velocity v, =(x,y,t)= (v()zéZ + voyéy)e .

Doing an integral over z, such that we’re looking at positions just above and below z
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(We now have a |kz| in the ¥, exponential — this is a “calculus fiddle”.)

Poisson’s equation requires:
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P, (x.3.1) =~ L glk-onr
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—iwv, =-2Qv
with as solution the dispersion relation
o’ =4Q% - 21GE, k| + k*v (15)

The gravity term will provide instability, while the Q term provides support — so
overall the disk is stabilized.

Three cases:
2nGX,

2
s

2. Ifinaddition v, =0, sheet is violently unstable at all A.

3. Rotation and pressure stabilize the sheet if

MR LT sy
Gz, 2

Equivalent result for razor-thin stellar sheet: stability requires

o0 68
G

0

1. If Q=0, sheet is unstable for |k| < k, =

Finite thickness in z reduces the required ¢ (velocity distribution).

Conclusions
1. A cold sheet is violently unstable
2. A minimum sound speed or velocity dispersion can stabilize the sheet
3. Fluid and stellar sheets behave very similarly.

Spiral Arms

Properties:
- Typically 2 arms, starting at opposite sides of the nucleus
- Grand design: global pattern
- Later spirals have irregular arms, local patterns
- Barred spiral arms: arms attach to opposite ends of the bar
- M51 spiral arm attached to a small companion galaxy
- Arms are clearest in young (blue) stars and interstellar gas
- Galaxies without gas show no spiral arms

Parameters:

. . . 2r .
m : The shape is invariant under rotation under — radians.
m

Can talk about m —fold symmetry, mostly m =2 but sometimes m = 3.
m spiral arms (usually)

i : pitch angle i at radius r is the angle between the tangent to the arm and the
tangent to the circle |r| = const . By definition 0 <i <180°.

Observations show i in the range 5 —20°.

Arms appear to be frailing the rotation, not leading.
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Winding dilemma
Differential rotation destroys the arms. Take a linear, radial structure in disk galaxy:
¢(R) = ¢, . Let the structure rotate with the stars. At time 7,

O(R.t) =0, +Q(R)t

The pitch angle is
coti = Ra—¢ =Rt @
oR dR
For small i and radial inter-arm spacing AR << R,
2nR
AR =22
coti

For our galaxy, QR =v_=220kms™", R=10kpc, t =10" yrs:
i=0.25°, AR =0.28kpc
Predicts a much tightly wound spiral structure (by around a factor of 10).

Solutions to the Winding Dilemma:
1. Arms have a very short life span but continuously reform
2. Temporary phenomenon due to sudden violent disturbance
3. Detonation of star formation: forest fire model
4. Density wave following an enhancement to the gravitational potential

Kinematic density wave
Stellar orbit with radial period 7, . Recall

T,=-=T,
Ap

. . . 2r
During 7, , azimuthal angle increases by A¢. The radial frequency is @, = T and

r

. . A . . .
the Azimuthal frequency is w, = TQ) . Assume a rotating coordinate frame with

r

angular sped Q  (“pattern speed”).

Ap,=Ap-QT,
If Ag, can be written as A@, =27zn/m, with n,m integers,
U BN
T, T m m m
Q - nx
where we used the epicycle AT

approximation: €2 is the circular

. l i idly wi
angular spee d and x is the Usually varies rapidly with R

epicycle frequency.
The orbit closes after m radial L W
oscillations. The pattern formed 0— =~ - allows preservation

PN : : n of rotating pattern
by thpse orbits is statlopary in the Close to zero for most of the disc
rotating frame, or rotating at Q

for a stationary observed.
Q, is the pattern speed.
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