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Instability of Collisionless systems 
Stellar system is described by the Collisionless Boltzmann and Poison equation. 
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In equilibrium, there is a time independent solution 
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Suppose a stellar system is in equilibrium. Introduce a minor perturbation to this 
system: 
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1. Extract a version of equation in background. (i.e. it is possible to subtract all 

parts of the background equation from the combined expression) 
2. Remove all terms that are second order or higher in perturbations: !  is small, 

so ! 2  is negligible. 
3. May be able to remove some differentials of background variables, e.g. !

!t
 - 

background is time independent. 
 
From equations (1-4), to first order: 
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The equilibrium is unstable if the perturbation grows over time. This always happens 
in a rotating disk with zero random velocities. 
 
Compare a perfect fluid (no random velocities) with the equations for perturbation. 
The equations for a prefect fluid are: 

!"

!t
+ # $ "v( ) = 0  (Continuity) 

!v

!t
+ v "#( )v = $

1

%
#p $ #&  (Momentum) 

!2" = 4#G$  (Poisson equation) 
p = p ! x,t( )( )  (Equation of State) 

 
Taking the continuity equation: 
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Those with boxes around sum up to zero by the continuity equation in the 
background, while those with crosses through are removed as they are second order in 
the perturbation. Those with a single line through are removed by the Jeans ‘swindle’, 
which states that with constant !
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Taking the momentum transfer; 
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Through a Taylor expansion, 1+
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Taking the Poisson equation, 
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The Equation of State can be expanded, 
p = p !( )  
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where v
s
 is the sound speed. 

 
Consider a homogeneous medium of density !

0
 and pressure p

0
 and v

0
= 0 . Assume 

!
0
= 0  (Jeans’s swindle). With h

1
= v

s

2
!
1

!
0

, 

!"
1

!t
+# $ p

0
v
1( ) = 0  (A) 

!v
1

!t
= "#h

1
" #$

1
= "

#%
1

%
0

" #$
1
 (B) 

!2"
1
= 4#G$

1
 (C) 

p
1
= v

s

2!
1
 (D) 

We want to reduce these four equations down to 1. Do this by eliminating v
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Solutions are of the form 
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For small !  or large k  (small wavelength ! = 2" / k ) solution is a sound wave. For 
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Perturbations are unstable if the wavelength exceeds the Jeans length !
J
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For a stellar system the result is very similar. Assume 
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Instability occurs when 
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This is the same result, but with the velocity dispersion in place of the sound velocity. 
 
Stellar systems are stable against small scale perturbations. 
 
Application to real stellar systems 
Virial theorem: 2K +W = 0  (internal kinetic energy is minus half the potential 
energy). 
 
For a system with random velocities v2 , 
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where rg  is an equivalent gravitational radius. A system with a velocity dispersion v2  

has typical size rg =
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Instabilities tend to occur on size scales comparable to the size of the system. 
 
Radial systems 
A system is stable if there are no accessible configurations with lower energy. 
 
One can show: 
A spherical system with f
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0
/ dE < 0  is stable to all non-radial and 

radial perturbations. 
 
Isochrone and Plummer models are both stable  Globular clusters are stable. 
 
If f
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E,L( )  there may be bar-like instabilities. 


