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Time-dependent stellar systems 

 
Assume a star with some velocity with respect to other ‘field’ stars. Assume a close 
encounter with another star, with impact parameter b . Consider force perpendicular 
to stellar motion. 
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where R  is the radius of the galaxy, N  is the total number of stars, and stars are 
uniformly distributed. 
 
The change in velocity due to !n  (encounters due to a single crossing of the galaxy) 
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Integrate over all impact parameters b  
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where we’re integrating from a minimum impact parameter b
min

 (the theory can’t 

handle 0) to R  the galactic scale. ! = R / b
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The number of crossings required to randomize the velocity v2 = vp
2( )  is 
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The relaxation time is 
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For galaxies, N = 10
11 , n ! 100 . Relaxation is unimportant. 

For globular clusters, N = 10
5 , t

cross
= 10

5
yr . Relaxation is important over cluster 

lifetime 1010 yr( ) . 

Cores of globular clusters, N = 10
4 , t

cross
= 10

3
yr . Relaxation dominant. 

 
Overall, we expect non-relaxed velocity distributions (based on the 2-body estimate). 
However, stellar velocities are approximately relaxed. Why? Violent relaxation 
(probably). D. Lynden-Bell (1967). He said that the energy of each star, 
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1
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is constant in a fixed potential. However, the potential is not constant – it is a function 
of both position and time, ! = ! r,t( ) . This means that the energy of the star won’t 
be constant either. An example would be the passage of a spiral arm through a ‘stellar 
neighbourhood’. 
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where 
d

dt
 is a derivative following the motion of the star. We can expand the last 

term as 
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using 
 
!v = !"# , i.e. the acceleration is caused by the change in potential. Some stars 

will gain energy as !  changes, while others will loose energy. It depends on the 
situation of the star. Overall, populations of stars with different original E  become 
mixed. The energy per unit mass is shared. This leads to relaxation on time  ! !"#1 . 
The exact timescale is 
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i.e. the RMS average over many perturbations. It is approximately equal to the free-
fall, or dynamical, time. It is around 108 yrs  for the milky way. 
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A star in situation (1) will loose energy, as the potential it is in is deepening. The star 
at (2), which has an initial velocity away from the center of the potential, will not 
loose energy at the start, and once the potential has deepened it has an increased 
potential energy, which can be converted to kinetic energy when it stars falling into 
the potential well. When this star reaches the centre after the most compact 
configuration of the potential has been reached, then it will have – and can hold on to 
– sufficient energy to reach the other side of the potential. It can reach the original 
level in the potential with more KE than it had at the start. 
2-body relaxation relaxes in energy, with energy pumped from high mass to low mass 
objects. Violent relaxation only relaxes with energy per unit mass. 
 
Phase space density 
We have a 7 dimensional phase space, t,vx ,vy ,vz , x, y, z . The number of stars with 

position x  and velocity v  is dn = f x,v,t( )d 3xd 3v . The differentials include any 
necessary Jacobians for the coordinate systems, e.g. d 3x = Jd!

1
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f x,v,t( )  is the 

distribution function or phase space density. The total number of stars is conserved, 
N = f x,v,t( )d 3x! d

3
v! . 

The differential with respect to t  is 
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(Note: this differs slightly from the version given in the lectures, hopefully 
correctly…) The last part is a form of the Boltzmann equation. In this form, it is valid 
in all orthogonal coordinate systems. Note that !

v
 denotes the grad operator with 

velocity rather than position. Again using 
 
!v = !"# , 
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In cylindrical coordinates, this is 
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Collisionless Boltzmann equation 
If stars do not make sudden jumps in f , 
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If the motion of a star is determined by the mean potential, the system is collisionless. 
If not, sudden velocity changes occur due to chance encounters with individual stars. 
 
In the absence of collisions, the phase space density is constant. f  is said to be 
incompressible. 
 
Jeans Theorem 
(A) Any steady state solution of the Collisionless Boltzmann equation is fully 
described as a function of the integrals of motion, and (B) any function of the 
integrals of motion will yield a steady-state solution of the Collisionless Boltzmann 
equation. 
 
Strong Jeans Theorem 
The distribution function of a steady-state galaxy with regular stellar orbits can be 
described as a function of only three independent isolating integrals. 
 
Jeans Theorems 
Integral of motion is time independent along an orbit. 
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