2. Densities in Coordinate Space

$P(\underline{R})=W(\underline{R}, \underline{R})=$ the probability density of the $3 N$-dimensional configuration \underline{R}.

Bosons

These are particles with spin $0,1,2,3, \ldots$.
The wavefunction

$$
\phi_{n}\left(\underline{r}_{1}, \underline{r}_{2}, \ldots, \underline{r}_{i}, \ldots, \underline{r}_{j}, \ldots, \underline{r}_{N}\right)=\phi_{n}\left(\underline{r}_{1}, \underline{r}_{2}, \ldots, \underline{r}_{j}, \ldots, \underline{r}_{i}, \ldots, \underline{r}_{N}\right)
$$

i.e. the many-body wavefunction of identical bosons is symmetric, or 'even', under the interchange of any two particles.

Fermions

These are particles with spin $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \ldots$.
The wavefunction

$$
\phi_{n}\left(\underline{r}_{1}, \underline{r}_{2}, \ldots, \underline{r}_{i}, \ldots, \underline{r}_{j}, \ldots, \underline{r}_{N}\right)=-\phi_{n}\left(\underline{r}_{1}, \underline{r}_{2}, \ldots, \underline{r}_{j}, \ldots, \underline{r}_{i}, \ldots, \underline{r}_{N}\right)
$$

i.e. the many-body wavefunction of identical fermions is antisymmetric, or 'odd', under the interchange of any two particles.

For both fermionic and bosonic many-body systems, the probability density

$$
\phi_{n} *(\underline{R}) \phi_{n}(\underline{R})
$$

is always symmetric (i.e. even) under interchange of any two particles. So the total probability density

$$
P(\underline{R})=W(\underline{R}, \underline{R})=\frac{1}{Z} \sum_{n} e^{-\beta E_{n}}\left|\phi_{n}(\underline{R})\right|^{2}
$$

is always symmetric under the interchange of particles.

$$
\begin{equation*}
P\left(\underline{r}_{1}, \underline{r}_{2}, \ldots, \underline{r}_{i}, \ldots, \underline{r}_{j}, \ldots, \underline{r}_{N}\right)=P\left(\underline{r}_{1}, \underline{r}_{2}, \ldots, \underline{r}_{j}, \ldots, \underline{r}_{i}, \ldots, \underline{r}_{N}\right) \tag{26}
\end{equation*}
$$

So $P(\underline{R})$ does not change under interchange of any number of particles (in any order) because any permutation $\left(\underline{r}_{1}, \underline{r}_{2}, \ldots, \underline{r}_{N}\right)$ may be obtained as a succession of interchanges of two particles.

$$
\begin{aligned}
& P\left(\underline{r}_{3}, \underline{r}_{1}, \underline{r}_{2}\right)=P\left(\underline{r}_{1}, \underline{r}_{3}, \underline{r}_{2}\right)=P\left(\underline{r}_{1}, \underline{r}_{2}, \underline{r}_{3}\right) \\
& P\left(\underline{r}_{3}, \underline{r}_{1}, \underline{r}_{2}\right)=P\left(\underline{r}_{2}, \underline{r}_{1}, \underline{r}_{3}\right)=P\left(\underline{r}_{1}, \underline{r}_{2}, \underline{r}_{3}\right)
\end{aligned}
$$

2.1 The One-Body Density

The one-body density operator is given by $\hat{\rho}(\underline{x}) \cdot \underline{x}=(x, y, z)$ is any position in 3D space in the volume V that is occupied by the many-body system.

If particles were rigidly fixed to their places $\underline{r}_{1}, \underline{r}_{2}, \ldots, \underline{r}_{N}$, then the classical density $\rho_{c}(\underline{x})$ would be given by

$$
\rho_{c}(\underline{x})=\sum_{i=1}^{N} \delta\left(\underline{x}-\underline{r}_{i}\right)
$$

which would be the probability density that a particle is at \underline{x}.

$$
\begin{equation*}
\delta\left(\underline{x}-\underline{r}_{i}\right)=\delta\left(x-x_{i}\right) \delta\left(y-y_{i}\right) \delta\left(z-z_{i}\right) \tag{27}
\end{equation*}
$$

is the three-dimensional Dirac delta function.

The normalization of the delta function is

$$
\begin{equation*}
\int_{V} \delta\left(\underline{x}-\underline{r}_{i}\right) d \underline{r}_{i}=\int_{V} \delta\left(x-x_{i}\right) \delta\left(y-y_{i}\right) \delta\left(z-z_{i}\right) d x_{i} d y_{i} d z_{i}=1 \tag{28}
\end{equation*}
$$

We also have that (for a single particle)

$$
\begin{equation*}
\int_{V} \delta\left(\underline{x}-\underline{r}_{i}\right) d \underline{x}=\int_{V} \delta\left(x-x_{i}\right) \delta\left(y-y_{i}\right) \delta\left(z-z_{i}\right) d x d y d z=1 \tag{29}
\end{equation*}
$$

i.e. the particle must be present in either coordinate system. So

$$
\int_{V} \rho_{c}(\underline{x}) d \underline{x}=\sum_{i=1}^{N} \int_{V} \delta\left(\underline{x}-\underline{r}_{i}\right) d \underline{x}=\sum_{i=1}^{N} 1=N
$$

because we have N particles.
$\rho(\underline{x})$ is the one-body density, and is also known as the one-body distribution function. It is the probability density for a particle to be at \underline{x}.
$\rho(\underline{x}) d \underline{x}=\rho(\underline{x}) d x d y d z$ is the probability of a particle being in an infinitesimal 3D volume element of size $d \underline{x}=d x d y d z$ centered at \underline{x}.

Quantum

Turn $\rho_{c}(\underline{x})$ into operator $\hat{\rho}(\underline{x})$, which is the operator of multiplication with $\sum_{i=1}^{N} \delta\left(\underline{x}-\underline{r}_{i}\right)$.

$$
\begin{equation*}
\hat{\rho}(\underline{x})+(\underline{R})=\left(\sum_{i=1}^{N} \delta\left(\underline{x}-\underline{r}_{i}\right)\right) \times \psi(\underline{R})=\sum_{i=1}^{N} \delta\left(\underline{x}-\underline{r}_{i}\right) \psi(\underline{R}) \tag{31}
\end{equation*}
$$

$\operatorname{Multiply}(\underline{R})$ with $\sum_{i=1}^{N} \delta\left(\underline{x}-\underline{r}_{i}\right)$.
Take equation (15): the one-body density $\rho(\underline{x})$ is the thermodynamic expectation value of the one-body density operator $\hat{\rho}(\underline{x})$.

$$
\begin{equation*}
\langle\hat{\rho}(\underline{x})\rangle=\operatorname{Tr}\{\hat{\rho}(\underline{x}) \hat{W}\}=\rho(\underline{x}) \tag{32}
\end{equation*}
$$

Take equation (24):

$$
\begin{aligned}
& \int_{V^{N}}\left[\hat{O}_{\underline{R}} W\left(\underline{R}, \underline{R}^{\prime}\right)\right]\left(\underline{R}^{\prime}=\underline{R}\right) d \underline{R}=\int_{V^{N}}\left[\hat{\rho}(\underline{x}) W\left(\underline{R}, \underline{R}^{\prime}\right)\right]\left(\underline{R} \underline{R}^{\prime}=\underline{R}\right) d \underline{R} \\
&=\int_{V^{N}}\left[\sum_{i=1}^{N} \delta\left(\underline{x}-\underline{r}_{i}\right) W\left(\underline{R}, \underline{R}^{\prime}\right)\right]\left(\underline{R}^{\prime}=\underline{R}\right) d \underline{R} \\
&=\int_{V^{N}} \sum_{i=1}^{N} \delta\left(\underline{x}-\underline{r}_{i}\right) W(\underline{R}, \underline{R}) d \underline{R} \\
&=\sum_{i=1}^{N} \int_{V^{N}} \delta\left(\underline{x}-\underline{r}_{i}\right) W(\underline{R}, \underline{R}) d \underline{R} \\
& \begin{aligned}
\int_{V^{N}} \delta\left(\underline{x}-\underline{r}_{i}\right) P(\underline{R}) d \underline{R} & =\int_{V^{N}} \delta\left(\underline{x}-\underline{r}_{i}\right) P\left(\underline{r}_{1}, \underline{r}_{2}, \ldots, \underline{r}_{i}, \ldots, \underline{r}_{N}\right) d \underline{r}_{1}, d \underline{r}_{2}, \ldots, d \underline{r}_{i}, \ldots, d \underline{r}_{N} \\
& =\int_{V^{N}} \delta\left(\underline{x}-\underline{r}_{i}\right) P\left(\underline{r}_{i}, \underline{r}_{2}, \ldots, \underline{r}_{1}, \ldots, \underline{r}_{N}\right) d \underline{r}_{i}, d \underline{r}_{2}, \ldots, d \underline{r}_{1}, \ldots, d \underline{r}_{N}
\end{aligned}
\end{aligned}
$$

Because every 3D particle coordinate $\underline{r}_{1}, \underline{r}_{2}, \ldots, \underline{r}_{i}, \ldots, \underline{r}_{N}$ is integrated over V, we may relabel the integration variables $\underline{r}_{i} \rightarrow \underline{y}$ and $\underline{r}_{1}=\underline{z}$. Hence

$$
\begin{aligned}
\int_{V^{N}} \delta\left(\underline{x}-\underline{r}_{i}\right) P(\underline{R}) d \underline{R} & =\int_{V^{N}} \delta(\underline{x}-\underline{y}) P\left(\underline{y}, \underline{r}_{2}, \ldots, \underline{z}, \ldots, \underline{r}_{N}\right) d \underline{y}, d \underline{r}_{2}, \ldots, d \underline{z}, \ldots, d \underline{r}_{N} \\
& =\int_{V} \ldots \int_{V} \ldots \int_{V}\{\underbrace{\left\{\int_{V} \delta(\underline{x}-\underline{y}) P\left(\underline{r}_{2}, \ldots, \underline{z}, \ldots, \underline{r}_{N}\right) d \underline{y}\right\}}_{=P\left(\underline{x}, \underline{r}_{2}, \ldots \underline{z}, \ldots, \underline{r}_{N}\right)} d \underline{r}_{2} \ldots d \underline{\ldots} d \underline{r}_{N} \\
& =\int_{V^{N-1}} P\left(\underline{x}, \underline{r}_{2}, \ldots, \underline{z}, \ldots, \underline{r}_{N}\right) d \underline{r}_{2} \ldots d \underline{z} \ldots d \underline{r}_{N}
\end{aligned}
$$

which is a $3(N-1)$ dimensional integration, where we have used

$$
\begin{equation*}
\int_{V} \delta(\underline{x}-\underline{y}) f(\underline{y}) d \underline{y}=f(\underline{x}) \tag{33}
\end{equation*}
$$

which applies for any function $f(\underline{y})$. We can now relabel the integration variable $\underline{z} \rightarrow \underline{r}_{i}$. It follows that:

$$
\int_{V^{N}} \delta\left(\underline{x}-\underline{r}_{i}\right) P(\underline{R}) d \underline{R}=\int_{V^{N-1}} P\left(\underline{x}, \underline{r}_{2}, \underline{r}_{3}, \ldots, \underline{r}_{N}\right) d \underline{r}_{2} d \underline{r}_{3}, \ldots, d \underline{r}_{N}
$$

We get the same result for all i. Hence (remembering that $W(\underline{R}, \underline{R})=P(\underline{R})$),

$$
\begin{aligned}
& \sum_{i=1}^{N} \int_{V^{N}} \delta\left(\underline{x}-\underline{r}_{i}\right) P(\underline{R}) d \underline{R}=\rho(\underline{x})=N \int_{V^{N-1}} P\left(\underline{x}, \underline{r}_{2}, \underline{r}_{3}, \ldots, \underline{r}_{N}\right) d \underline{r}_{2} d \underline{r}_{3} \ldots d \underline{r}_{N} \\
& \rho(\underline{x})=N \int_{V^{N-1}} W\left(\underline{x}, \underline{r}_{2}, \underline{r}_{3}, \ldots, \underline{r}_{N}, \underline{x}, \underline{r}_{2}, \underline{r}_{3}, \ldots, \underline{r}_{N}\right) d \underline{r}_{2} d \underline{r}_{3} \ldots d \underline{r}_{N} \\
&=N \int_{V^{N-1}} P\left(\underline{x}, \underline{r}_{2}, \underline{r}_{3}, \ldots, \underline{r}_{N}\right) d \underline{r}_{2} d \underline{r}_{3} \ldots d \underline{r}_{N} \\
&=\left\langle\sum_{i=1}^{N} \delta\left(\underline{x}-\underline{r}_{i}\right)\right\rangle(34) \\
& \int_{V} \rho(\underline{x}) d \underline{x}=N \int_{V^{N}} P\left(\underline{x}, \underline{r}_{2}, \underline{r}_{3}, \ldots, \underline{r}_{N}\right) d \underline{r}_{2} d \underline{r}_{3} \ldots d \underline{r}_{N}
\end{aligned}
$$

Relabel the integration variable $\underline{x} \rightarrow \underline{r}_{1}$, and using equation 23,

$$
\begin{aligned}
\int_{V} \rho(\underline{x}) d \underline{x} & =N \int_{V^{N}} P\left(\underline{r}_{1}, \underline{r}_{2}, \underline{r}_{3}, \ldots, \underline{r}_{N}\right) d \underline{r}_{2} d \underline{r}_{3} \ldots d \underline{r}_{N} \\
& =N \int_{V^{N}} P(\underline{R}) d \underline{R}=N \int_{V^{N}} W(\underline{R}, \underline{R}) d \underline{R}=N
\end{aligned}
$$

$$
\begin{equation*}
\int_{V} \rho(\underline{x}) d \underline{x}=N \tag{35}
\end{equation*}
$$

This is particle number conservation.

2.2 The Two-Body Density

For all particles rigidly fixed to their positions $\underline{r}_{i}, 1 \leq i \leq N$, the probability density for a particle to be at $\underline{x}_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and another particle is simultaneously at $\underline{x}_{2}=\left(x_{2}, y_{2}, z_{2}\right)$

$$
\delta\left(\underline{x}_{1}-\underline{r}_{i}\right) \delta\left(\underline{x}_{2}-\underline{r}_{2}\right) \text { for } i \neq j
$$

as the probabilities for i to be at \underline{x}_{1} and j to be at \underline{x}_{2} multiply. The total probability density $\sum_{i=1}^{N} \sum_{\substack{j=1 \\ j \neq i}}^{N} \delta\left(\underline{x}_{1}-\underline{r}_{i}\right) \delta\left(\underline{x}_{1}-\underline{r}_{i}\right)$, because the probabilities add up for the $N(N-1)$ distinct ordered pairs (i, j) of particles. For the quantum expression, convert to the two-body density operator $\hat{\rho}_{2}\left(\underline{x}_{1}, \underline{x}_{2}\right)$.

$$
\begin{align*}
\hat{\rho}_{2}\left(\underline{x}_{1}, \underline{x}_{2}\right) & =\sum_{i=1}^{N} \sum_{\substack{j=1 \\
j \neq i}}^{N} \delta\left(\underline{x}_{1}-\underline{r}_{i}\right) \delta\left(\underline{x}_{2}-\underline{r}_{j}\right) \\
& =\sum_{i \neq j=1}^{N} \delta\left(\underline{x}_{1}-\underline{r}_{i}\right) \delta\left(\underline{x}_{2}-\underline{r}_{j}\right) \tag{36}
\end{align*}
$$

$\hat{\rho}_{2}\left(\underline{x}_{1}, \underline{x}_{2}\right)$ is the operator of multiplication with $\sum_{i \neq j=1}^{N} \delta\left(\underline{x}_{1}-\underline{r}_{i}\right) \delta\left(\underline{x}_{2}-\underline{r}_{j}\right)$.

$$
\begin{equation*}
\hat{\rho}_{2}\left(\underline{x}_{1}, \underline{x}_{2}\right) \psi(\underline{R})=\left[\sum_{i \neq j=1}^{N} \delta\left(\underline{x}_{1}-\underline{r}_{i}\right) \delta\left(\underline{x}_{2}-\underline{r}_{j}\right)\right] \psi(\underline{R}) \tag{37}
\end{equation*}
$$

