Thermodynamic average or thermodynamic expectation value of a quantummechanical quantity described by an operator \hat{O},

$$
\begin{equation*}
\langle\hat{O}\rangle=\operatorname{Tr}(\hat{O} \hat{W})=\operatorname{Tr}(\hat{W} \hat{O}) \tag{15}
\end{equation*}
$$

Thermodynamic average of total energy

$$
\begin{gathered}
E=\langle\hat{H}\rangle=\operatorname{Tr}(\hat{H} \hat{W})=\frac{1}{Z} \operatorname{Tr}\left(\hat{H} e^{-\beta \hat{H}}\right) \\
\hat{H} e^{-\beta \hat{H}} \phi_{n}(\underline{R})=e^{-\beta E_{n}} \hat{H} \phi_{n}(\underline{R})=E_{n} e^{-\beta E_{n}} \phi_{n}(\underline{R})
\end{gathered}
$$

Trace of $\hat{H} e^{-\beta \hat{H}}$ is the sum of its eigenvalues $E_{n} e^{-\beta E_{n}}$.

$$
E=\frac{1}{Z} \sum_{n} E_{n} e^{-\beta E_{n}}=\sum_{n} E_{n} \frac{e^{-\beta E_{n}}}{Z} \text { (16) }
$$

with Z from equation (12).

(Probability vs. E_{n})
$\frac{1}{Z} e^{-\beta E_{n}}$ is the probability that quantum-mechanical energy eigenstates $\phi_{n}(\underline{R})$ with energy eigenvalue E_{n} is occupied at temperature T.

Equation (14), $\sum_{n} \frac{e^{-\beta E_{n}}}{Z}=1$, is the unit normalization of the probability distribution $\frac{e^{-\beta E_{n}}}{Z}$. Equation (16) is the weighted average of the energy eigenvalues E_{n}.

$$
\begin{gather*}
E_{\text {kin }}=\langle\hat{T}\rangle=\operatorname{Tr}(\hat{T} \hat{W})(17) \tag{17}\\
E_{\text {pot }}=\langle V(\underline{R})\rangle=\operatorname{Tr}(V(\underline{R}) \hat{W})(18 \tag{18}\\
E=\langle\hat{H}\rangle=\operatorname{Tr}(\hat{H} \hat{W})=\langle\hat{T}\rangle+\langle V(\underline{R})\rangle \tag{19}\\
=E_{\text {kin }}+E_{\text {pot }}
\end{gather*}
$$

Entropy

$$
\begin{aligned}
S & =-k_{B}\langle\ln (\hat{W})\rangle \\
& =-k_{B} \operatorname{Tr}(\hat{W} \ln (\hat{W})) \\
& =-k_{B} \sum_{n} \frac{e^{-\beta E_{n}}}{Z} \ln \left(\frac{e^{-\beta E_{n}}}{Z}\right)
\end{aligned}
$$

1.3 Density Matrix in Coordinate Space

Take equation (11):

$$
\begin{gathered}
e^{-\beta \hat{H}} \psi(\underline{R})=\sum_{n} e^{-\beta E_{n}}\langle n \mid \psi\rangle \phi_{n}(\underline{R}) \\
\hat{W} \psi(\underline{R})=\frac{1}{Z} e^{-\beta \hat{H}} \psi(\underline{R})=\sum_{n} \frac{1}{Z} e^{-\beta E_{n}}\langle n \mid \psi\rangle \phi_{n}(\underline{R}) \\
=\sum_{n} \frac{1}{Z} e^{-\beta E_{n}} \phi_{n}(\underline{R}) \int_{V^{N}} \phi^{*}\left(\underline{R}^{\prime}\right) \psi\left(\underline{R}^{\prime}\right) d \underline{R}^{\prime} \\
\underline{R}^{\prime}=\left(\underline{r}_{1}{ }^{\prime}, \underline{r}_{2}^{\prime}, \ldots, \underline{r}_{N}{ }^{\prime}\right) \\
\int_{V^{N}} \ldots d \underline{R^{\prime}}=\int_{V} \int_{V} \ldots \int_{V}^{\ldots d \underline{r}_{1}{ }^{\prime} d \underline{r}_{2}{ }^{\prime} \ldots d \underline{r}_{N}{ }^{\prime}}
\end{gathered}
$$

There are N integrals in total.

$$
\begin{gathered}
\hat{W} \psi(\underline{R})=\int_{V^{N}}\left\{\sum_{n} \frac{e^{-\beta E_{n}}}{Z} \phi_{n} *\left(\underline{R}^{\prime}\right) \phi_{n}(\underline{R})\right\} \psi\left(\underline{R}^{\prime}\right) d \underline{R}^{\prime} \\
W\left(\underline{R}, \underline{R}^{\prime}\right)=\sum_{n} \frac{e^{-\beta E_{n}}}{Z} \phi_{n} *\left(\underline{R}^{\prime}\right) \phi_{n}(\underline{R})(20)
\end{gathered}
$$

This is called the Density Matrix in Coordinate Space. It is a function of two $3 N-$ dimensional variables, \underline{R} and \underline{R}^{\prime}; it is a function of $6 N$ variables.

$$
\begin{equation*}
\hat{W} \psi(\underline{R})=\int_{V^{N}} W\left(\underline{R}, \underline{R}^{\prime}\right) \psi\left(\underline{R}^{\prime}\right) d \underline{R}^{\prime} \tag{21}
\end{equation*}
$$

This is an integral representation of \hat{W}. Take normalization (14):

$$
\begin{gathered}
\operatorname{Tr}(\hat{W})=\sum_{n} \frac{e^{-\beta E_{n}}}{Z}=1 \\
\frac{1}{Z} e^{-\beta E_{n}}=\frac{e^{-\beta E_{n}}}{Z} \int_{V^{N}} \phi_{n}^{*}(\underline{R}) \phi_{n}(\underline{R}) d \underline{R}
\end{gathered}
$$

(This integral equals one, hence why it can be substituted in)

$$
\begin{aligned}
\operatorname{Tr}(\hat{W}) & =\int_{V^{N}}\left\{\sum_{n} \frac{e^{-\beta E_{n}}}{Z} \phi_{n} *(\underline{R}) \phi_{n}(\underline{R})\right\} d \underline{R}=1 \\
& =\int_{V^{N}} W(\underline{R}, \underline{R}) d \underline{R}
\end{aligned}
$$

$W(\underline{R}, \underline{R})$ is called the diagonal elements of the density matrix.

$$
\begin{equation*}
W(\underline{R}, \underline{R})=\sum_{n} \frac{e^{-\beta E_{n}}}{Z}\left|\phi_{n}(\underline{R})\right|^{2} \tag{22}
\end{equation*}
$$

This is obtained by setting $\underline{R}^{\prime}=\underline{R}$ in equation (20). The unit-normalization:

$$
\begin{equation*}
\int_{V^{n}}^{-} W(\underline{R}, \underline{R}) d \underline{R}=1 \tag{23}
\end{equation*}
$$

If the many-body system is in a pure eigenstate, i.e. in a single state $\phi_{n}(\underline{R})$ at $T=0$, then $\left|\phi_{n}(\underline{R})\right|^{2}$ is the probability density that the particles are at $\underline{r}_{1}, \underline{r}_{2}, \ldots, \underline{r}_{N}$. This is equal to the probability density that the system is in a $3 N$-dimensional configuration $\underline{R}=\left(\underline{r}_{1}, \underline{r}_{2}, \ldots, \underline{r}_{N}\right)$.
$\left|\phi_{n}(\underline{R})\right|^{2} d \underline{R}$ is the probability that $3 N$-dimensional spatial configuration vector \underline{R} lies in an infinitesimal $3 N$-dimensional volume of size $d \underline{R}=d \underline{r}_{1}, d \underline{r}_{2}, \ldots, d \underline{r}_{N}$ $=d x_{1} d y_{1} d z_{1} d x_{2} d y_{2} d z_{2} \ldots d x_{N} d y_{N} d z_{N}$ centered at \underline{R}.
$\left|\phi_{n}\left(\underline{r}_{1}, \underline{r}_{2}, \ldots, \underline{r}_{N}\right)\right|^{2} d \underline{r}_{1}, d \underline{r}_{2}, \ldots, d \underline{r}_{N}$ is the probability that a particle is in an infinitesimal three-dimensional volume $d \underline{r}_{1}=d x_{1} d y_{1} d z_{1}$ at \underline{r}_{1}, another particle in $d \underline{r}_{2}=d x_{2} d y_{2} d z_{2}$ at $\underline{r}_{2}, \ldots$, and an N-th particle in $d \underline{r}_{N}=d x_{N} d y_{N} d z_{N}$ at \underline{r}_{N}.

The normalization of the wavefunctions $\int_{V^{N}}\left|\phi_{n}(\underline{R})\right|^{2} d \underline{R}=1$ means that the probabilities $\left|\phi_{n}(\underline{R})\right|^{2} d \underline{R}$ integrate up to certainty. Every \underline{r}_{i} will certainly be somewhere in the volume occupied by the many-particle system.

At $T>0$, the probability density for the $3 N$-dimensional configuration vector \underline{R} is given by the sum of the probability densities $\left|\phi_{n}(\underline{R})\right|^{2}$ weighted by the probability $\frac{1}{Z} e^{-\beta E_{n}}$ that the quantum state $\phi_{n}(\underline{R})$ is occupied at $T>0$. This is equation (22).
$W(\underline{R}, \underline{R}) d \underline{R}$ is the probability that the $3 N$-dimensional configuration vector lies in an infinitesimal volume of size $d \underline{R}$ centered at \underline{R}.

Normalization (23) has the meaning that the probabilities $W(\underline{R}, \underline{R}) d \underline{R}$ integrate up to certainty. The configuration vector \underline{R} is guaranteed to lie somewhere.

Equation (15) in coordinate space representation

$$
\langle\hat{O}\rangle=\operatorname{Tr}(\hat{O} \hat{W})=\sum_{\lambda} \int_{V^{N}} \chi_{\lambda} *(\underline{R}) \hat{O} \hat{W} \chi_{\lambda}(\underline{R}) d \underline{R}
$$

This is the sum of expectation values $\int_{V^{\wedge}} \chi_{\lambda} *(\underline{R}) \hat{O} \hat{W} \chi_{\lambda}(\underline{R}) d \underline{R}$ with respect to any complete orthonormalized set $\chi_{\lambda}(\underline{R})$ of basis functions.

The trace is independent of the choice of complete orthonormalized set of basis functions.

Take now eigenfunctions $\phi_{n}(\underline{R})$ of the Hamiltonian \hat{H}.

$$
\begin{gathered}
\hat{H} \phi_{n}(\underline{R})=E_{n} \phi_{n}(\underline{R}) \\
\hat{W} \phi_{n}(\underline{R})=\frac{e^{-\beta E_{n}}}{Z} \phi_{n}(\underline{R})(13) \\
\langle\hat{O}\rangle=\sum_{n} \int_{V^{N}} \phi_{n} *(\underline{R}) \hat{O} \hat{W} \phi_{n}(\underline{R}) d \underline{R} \\
=\sum_{n} \int_{V^{N}} \phi_{n} *(\underline{R}) \frac{e^{-\beta E_{n}}}{Z} \hat{O} \phi_{n}(\underline{R}) d \underline{R} \\
=\int_{V^{N}}\left\{\sum_{n} \frac{e^{-\beta E_{n}}}{Z} \phi_{n} *(\underline{R}) \hat{O}_{\underline{R}} \phi_{n}(\underline{R})\right\} d \underline{R}
\end{gathered}
$$

where the subscript \underline{R} on \hat{O} is used to emphasise that this operator acts on \underline{R}.

$$
\begin{aligned}
\sum_{n} \frac{e^{-\beta E_{n}}}{Z} \phi_{n} *(\underline{R}) \hat{O}_{\underline{R}} \phi_{n}(\underline{R}) & =\left\{\hat{O}_{\underline{R}}\left[\sum_{n} \frac{e^{-\beta E_{n}}}{Z} \phi_{n} *\left(\underline{R}^{\prime}\right) \phi_{n}(\underline{R})\right]\right\}\left(\underline{R}^{\prime}=\underline{R}\right) \\
& =\left\{\sum_{n} \frac{e^{-\beta E_{n}}}{Z} \phi_{n} *\left(\underline{R}^{\prime}\right) \hat{O}_{\underline{R}} \phi_{n}(\underline{R})\right\}\left(\underline{R}^{\prime}=\underline{R}\right) \\
& =\sum_{n} \frac{e^{-\beta E_{n}}}{Z} \phi_{n} *(\underline{R}) \hat{O} \phi_{n}(\underline{R})
\end{aligned}
$$

$\left\{\hat{O}_{R}[\ldots]\left(\underline{R}, \underline{R}^{\prime}\right)\right\}\left(\underline{R}^{\prime}=\underline{R}\right)$ means that we apply the operator \hat{O} to the variable \underline{R} only in $[\ldots]\left(\underline{R}, \underline{R}^{\prime}\right)$ and not to variable \underline{R}^{\prime}, and then after having carried out that operation set $\underline{R}^{\prime}=\underline{R}$ in the result thus obtained.

$$
\begin{aligned}
&\left\{\hat{O}_{\underline{R}}\left[\sum_{n} \frac{e^{-\beta E_{n}}}{Z} \phi_{n} *\left(\underline{R}^{\prime}\right) \phi_{n}(\underline{R})\right]\right\}\left(\underline{R}^{\prime}=\underline{R}\right)=\left\{\hat{O}_{\underline{R}} W\left(\underline{R}, \underline{R}^{\prime}\right)\right\}\left(\underline{R}^{\prime}=\underline{R}\right) \\
&=\sum_{n} \frac{e^{-\beta E_{n}}}{Z} \phi_{n} *(\underline{R}) \hat{O}_{\underline{R}} \phi_{n}(\underline{R}) \\
&\langle\hat{O}\rangle=\int_{V^{N}}\left[\hat{O}_{\underline{R}} W\left(\underline{R}, \underline{R}^{\prime}\right)\right]\left(\underline{R}^{\prime}=\underline{R}\right) d \underline{R}(24)
\end{aligned}
$$

Apply \hat{O} to \underline{R} in $W\left(\underline{R}, \underline{R}^{\prime}\right)$, then set in the result $\underline{R}^{\prime}=\underline{R}$, and integrate over the $3 N$ dimensional configuration space.

Potential Energy

$$
\begin{gathered}
E_{\text {pot }}=\langle V(\underline{R})\rangle=\int_{V^{N}}\left[V(\underline{R}) W\left(\underline{R}, \underline{R}^{\prime}\right)\right]\left(\underline{R}^{\prime}=\underline{R}\right) d \underline{R} \\
{\left[V(\underline{R}) W\left(\underline{R}, \underline{R}^{\prime}\right)\right]\left(\underline{R}^{\prime}=\underline{R}\right)=V(\underline{R}) W(\underline{R}, \underline{R})} \\
E_{\text {pot }}=\int_{V^{N}} V(\underline{R}) W(\underline{R}, \underline{R}) d \underline{R}(25)
\end{gathered}
$$

