
Thermodynamic average or thermodynamic expectation value of a quantum-
mechanical quantity described by an operator Ô , 
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n
R( ) = E

n
e
!"E

n#
n
R( )  
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with Z  from equation (12). 

 
(Probability vs. E

n
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ln Ŵ( )

= !k
B
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1.3 Density Matrix in Coordinate Space 
Take equation (11): 
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This is called the Density Matrix in Coordinate Space. It is a function of two 3N -
dimensional variables, R  and R ' ; it is a function of 6N  variables. 
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V
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This is an integral representation of Ŵ . Take normalization (14): 
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(This integral equals one, hence why it can be substituted in) 
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W R,R( )  is called the diagonal elements of the density matrix. 
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This is obtained by setting R ' = R  in equation (20). The unit-normalization: 

W R,R( )dR
V
N! = 1  (23) 

If the many-body system is in a pure eigenstate, i.e. in a single state !
n
R( )  at T = 0 , 
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equal to the probability density that the system is in a 3N -dimensional configuration 
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The normalization of the wavefunctions !
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N" = 1  means that the 
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dR  integrate up to certainty. Every r
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At T > 0 , the probability density for the 3N -dimensional configuration vector R  is 

given by the sum of the probability densities !
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W R,R( )dR  is the probability that the 3N -dimensional configuration vector lies in 
an infinitesimal volume of size dR  centered at R . 
 
Normalization (23) has the meaning that the probabilities W R,R( )dR  integrate up to 
certainty. The configuration vector R  is guaranteed to lie somewhere. 
 
Equation (15) in coordinate space representation 
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functions. 
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where the subscript R  on Ô  is used to emphasise that this operator acts on R . 
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R

e
!"En

Z
#
n
* R '( )#

n
R( )

n

$
%

&
'

(

)
*

+
,
-.

/
0
1.
R ' = R( )

=
e
!"En

Z
#
n
* R '( )Ô
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Ô
R
...[ ] R,R '( ){ } R ' = R( )  means that we apply the operator Ô  to the variable R  only 

in ...[ ] R,R '( )  and not to variable R ' , and then after having carried out that operation 
set R ' = R  in the result thus obtained. 
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Ô = Ô
R
W R,R '( )!" #$ R ' = R( )dR

V
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Apply Ô  to R  in W R,R '( ) , then set in the result R ' = R , and integrate over the 3N -
dimensional configuration space. 
 
Potential Energy 

Epot = V R( ) = V R( )W R,R '( )!" #$ R ' = R( )dR
V
N%  

V R( )W R,R '( )!" #$ R ' = R( ) = V R( )W R,R( )  

Epot = V R( )W R,R( )dR
V
N!  (25) 


