Operator \hat{H} of the total energy

Many-body Hamiltonian \hat{H} :

$$
\begin{align*}
\hat{H} & =\hat{T} \pm V(\underline{R})=-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2}+\sum_{i=1}^{N} V\left(r_{i j}\right)(3) \tag{3}\\
\hat{H} \psi(\underline{R}) & =\{\hat{T}+V(\underline{R})\} \psi(\underline{R})=\hat{T} \psi(\underline{R})+V(\underline{R}) \psi(\underline{R}) \\
& =-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2} \psi(\underline{R})+\sum_{i=1}^{N} V\left(r_{i j}\right) \psi(\underline{R})
\end{align*}
$$

Stationary (time-independent) many-body Schrödinger equation.
Eigenvalue equation for the energy eigenvalues E_{n} and eigenfunctions $\phi_{n}(\underline{R})=\phi_{n}\left(\underline{r}_{1}, \underline{r}_{2}, \ldots, \underline{r}_{N}\right)$ of the many-body Hamiltonian \hat{H} (eq. 3)

$$
\begin{equation*}
\hat{H} \phi_{n}(\underline{R})=E_{n} \phi_{n}(\underline{R}) \tag{4}
\end{equation*}
$$

Index n simply numerates the distinct energy eigenfunctions $\phi_{n}(\underline{R})$. Absolute ground state of the many-body system at temperature $T=0$ is denoted by $n=0 . E_{0}$ is the ground-state energy, and $\phi_{0}(\underline{R})$ is the ground state wavefunction.
$E_{0}<E_{n}$ for al other excited states. Ground state is energy eigenstate with the lowest energy eigenvalues.

$$
\begin{aligned}
\langle k \mid n\rangle & =\int_{V^{N}} \phi_{k} *(\underline{R}) \phi_{n}(\underline{R}) d \underline{R} \\
& =\int_{V} \int_{V} \ldots \int_{V} \phi_{k} *\left(\underline{r}_{1}, \underline{r}_{2}, \ldots, \underline{r}_{N}\right) \phi_{n}\left(\underline{r}_{1}, \underline{r}_{2}, \ldots, \underline{r}_{N}\right) d \underline{r}_{1} d \underline{r}_{2} \ldots d r_{N}
\end{aligned}
$$

There are N 3-dimensional integrals, integrating over $\underline{r}_{1}, \underline{r}_{2}, \ldots, \underline{r}_{N}$.

$$
\langle k \mid n\rangle=\int_{V} \int_{V} \ldots \int_{V} \phi_{k} *(\underline{R}) \phi_{n}(\underline{R}) d x_{1} d y_{1} d z_{1} d x_{2} d y_{2} d z_{2} \ldots d x_{N} d y_{N} d z_{N}
$$

The above is the scalar product of $\phi_{k}(\underline{R})$ and $\phi_{n}(\underline{R}) .3 N$-dimensional volume integral or N three-dimensional volume integrations, where \underline{r}_{i} is integrated over the three-dimensional volume V occupied by the many-particle system.

$$
\begin{align*}
\langle k| \hat{H}|n\rangle & =\int_{V^{N}} \phi_{k} *(\underline{R})\left[\hat{H} \phi_{n}(\underline{R})\right] d \underline{R} \tag{6}\\
& =\int_{V^{N}}\left[\hat{H} \phi_{k}(\underline{R})\right] * \phi_{n}(\underline{R}) d \underline{R}
\end{align*}
$$

As Hamiltonian is self-adjoint (Hermitian, symmetric). The asterisk denotes complex conjugation.

$$
\begin{gathered}
\psi(\underline{R})=\operatorname{Re}\{\psi(\underline{R})\}+i \operatorname{Im}\{\psi(\underline{R})\} \\
\psi(\underline{R})^{*}=\operatorname{Re}\{\psi(\underline{R})\}-i \operatorname{Im}\{\psi(\underline{R})\}
\end{gathered}
$$

Multiply (4) with $\phi_{k} *(\underline{R})$ and integrate over \underline{R} :

$$
\begin{aligned}
\phi_{k} *(\underline{R}) \hat{H} \phi_{n}(\underline{R}) & =E_{n} \phi_{k} *(\underline{R}) \phi_{n}(\underline{R}) \\
\int_{V^{N}} \phi_{k} *(\underline{R}) \hat{H} \phi_{n}(\underline{R}) d \underline{R} & =E_{n} \int_{V^{N}} \phi_{k} *(\underline{R}) \phi_{n}(\underline{R}) d \underline{R}
\end{aligned}
$$

Using equations (5) and (6),

$$
\langle k| \hat{H}|n\rangle=E_{n}\langle k \mid n\rangle
$$

$$
\begin{aligned}
& \hat{H} \phi_{k}(\underline{R})=E_{n} \phi_{k}(\underline{R}) \\
& \hat{H} \phi_{k} *(\underline{R})=E_{n} \phi_{k} *(\underline{R})
\end{aligned}
$$

So \hat{H}, equation (3), is real.
All eigenvalues E_{n} of \hat{H} are real, since \hat{H} is self-adjoint.
$E_{n}{ }^{*}=E_{n}$

$$
\begin{gathered}
\int_{V^{N}}\left[\hat{H} \phi_{k} *(\underline{R})\right] \phi_{n}(\underline{R}) d \underline{R}=\int_{V^{N}}\left[\hat{H} \phi_{k}(\underline{R})\right] * \phi_{n}(\underline{R}) d \underline{R}=\langle k| \hat{H}|n\rangle \\
=E_{k} \int_{V^{N}} \phi_{k} *(\underline{R}) \phi_{n}(\underline{R}) d \underline{R}=E_{k}\langle k \mid n\rangle \\
\therefore E_{k}\langle k \mid n\rangle=\langle k| \hat{H}|n\rangle \\
\therefore\left(E_{n}-E_{k}\right)\langle k \mid n\rangle=0 \\
\langle k \mid n\rangle=0 \text { for } E_{n} \neq E_{k}
\end{gathered}
$$

Eigenfunctions of different eigenvalues are orthogonal.
In general, degeneracy (different eigenfunctions have same energy eigenvalues).
Eigenfunctions can always be made orthogonal to each other by means of the GramSchmidt orthogonalization method. From now on always assume that eigenfunctions $\phi_{n}(\underline{R})$ of \hat{H} form a complete normalized orthogonal system of basis functions of the Hilbert space.

Orthogonality: $\langle k \mid n\rangle=0$ for $k \neq n$
Normalization: $\langle n \mid n\rangle=\int_{V^{N}}\left|\phi_{n}(\underline{R})^{2}\right| d \underline{R}=1$
If $\tilde{\phi}_{n}(\underline{R})$ is not normalized, then $\phi_{n}(\underline{R})$:

$$
\begin{gathered}
\phi_{n}(\underline{R})=\frac{\tilde{\phi}_{n}(\underline{R})}{\sqrt{\left\langle\tilde{\phi}_{n} \mid \tilde{\phi}_{n}\right\rangle}} \\
\left\langle\tilde{\phi}_{n} \mid \tilde{\phi}_{n}\right\rangle=\int_{V^{N}}\left|\tilde{\phi}_{n}(\underline{R})\right| d \underline{R}
\end{gathered}
$$

Orthonormalised: $\langle k \mid n\rangle=\delta_{k n}$ (7)
Kronecker delta $\delta_{k n}= \begin{cases}0 & k \neq n \\ 1 & k=n\end{cases}$
Completeness: any wave function $\psi(\underline{R})$ may be expanded in terms of $\phi_{n(\underline{R})}$.

$$
\psi(\underline{R})=\sum_{n} c_{n} \phi_{n}(\underline{R})
$$

Multiply with $\phi_{k} *(\underline{R})$ and integrate,

$$
\begin{aligned}
& \int_{V^{N}} \phi_{k} *(\underline{R}) \psi(\underline{R}) d \underline{R}=\langle k \mid \psi\rangle=\sum_{n} c_{n} \int_{V^{N}} \phi_{k} *(\underline{R}) \phi_{n}(\underline{R}) d \underline{R} \\
&=\sum_{n} c_{n}\langle k \mid n\rangle=\sum_{n} c_{n} \delta_{k n} \\
& c_{k}=\langle k \mid \psi\rangle \rightarrow c_{n}=\langle n \mid \psi\rangle
\end{aligned}
$$

$$
\begin{gather*}
\psi(\underline{R})=\sum_{n}\langle n \mid \psi\rangle \phi_{n}(\underline{R}) \\
\langle n \mid \psi\rangle=\int_{V^{N}} \phi_{n} *(\underline{R}) \psi(\underline{R}) d \underline{R} \tag{8}
\end{gather*}
$$

1.2 The Many-Body Density Operator

Temperature $T>0, \beta=\frac{1}{k_{B} T}$

$$
\begin{equation*}
\hat{W}=\frac{1}{Z} e^{-\beta \hat{H}} \tag{9}
\end{equation*}
$$

This is the density operator. Z is the partition function, and is also known as the sum of states.

$$
e^{-\beta \hat{H}} \phi_{n}(\underline{R})=e^{-\beta E_{n}} \phi_{n}(\underline{R})
$$

where $\hat{H} \phi_{n}(\underline{R})=E_{n} \phi_{n}(\underline{R})$. The eigenfunctions of $e^{-\beta \hat{H}}$ are the eigenfunctions $\phi_{n}(\underline{R})$ of \hat{H} and its eigenvalues are $e^{-\beta E_{n}}$.

$$
\begin{align*}
e^{-\beta \hat{H}} \psi(\underline{R}) & =e^{-\beta \hat{H}} \sum_{n}\langle n \mid \psi\rangle \phi_{n}(\underline{R}) \\
& =\sum_{n}\langle n \mid \psi\rangle e^{-\beta \hat{H}} \phi_{n}(\underline{R}) \\
& =\sum_{n}\langle n \mid \psi\rangle e^{-\beta E_{n}} \phi_{n}(\underline{R}) \\
e^{-\beta \hat{H}} \psi(\underline{R})= & \sum_{n} e^{-\beta E_{n}}\langle n \mid \psi\rangle \phi_{n}(\underline{R})(1 \tag{11}\\
Z & =\operatorname{Tr}\left\{e^{-\beta \hat{H}}\right\}
\end{align*}
$$

where $\operatorname{Tr}\}$ denotes the trace, i.e. the sum of eigenvalues (energies).

$$
\begin{gathered}
Z=\sum_{n} e^{-\beta E_{n}} \\
\hat{W} \phi_{n}(\underline{R})=\frac{e^{-\beta E_{n}}}{Z} \phi_{n}(\underline{R})
\end{gathered}
$$

Eigenvalues of the canonical density operator \hat{W} are given by $\frac{e^{-\beta E_{n}}}{Z}$.

$$
\operatorname{Tr}(\hat{W})=\sum_{n} \frac{e^{-\beta E_{n}}}{Z}=\frac{1}{Z} \sum_{n} e^{-\beta E_{n}}=1
$$

This gives unit-normalization of the density operator.
Macroscopic thermodynamics (statistical physics) may be obtained from Z, e.g.

$$
F=E-T S=-k_{B} T \ln (Z)
$$

where F is the Helmholtz free energy, $E=E_{k i n}+E_{p o t}$ is the total energy and S is the entropy.

