$\hat{O}=\hat{F} \hat{G}=$ product of operators \hat{F} and \hat{G} with matrix elements $F\left(\underline{R}, \underline{R}^{\prime}\right)$ and $G\left(\underline{R}, \underline{R}^{\prime}\right)$. What is $O\left(\underline{R}, \underline{R}^{\prime}\right)$?

$$
\begin{align*}
& \hat{O} \psi(\underline{R})=\int_{V^{N}} O\left(\underline{R}, \underline{R}^{\prime}\right) \psi\left(\underline{R}^{\prime}\right) d \underline{R}^{\prime}=\hat{F} \underbrace{\hat{G} \psi(\underline{R})}_{\int_{V^{N}} G\left(\underline{R}, \underline{R}^{\prime}\right) \psi\left(\underline{(\underline{l}}^{\prime}\right) d \underline{R}^{\prime}} \\
&=\hat{F} \int_{V^{N}} G\left(\underline{R}, \underline{R}^{\prime}\right) \psi\left(\underline{R}^{\prime}\right) d \underline{R}^{\prime} \\
&=\int_{V^{N}}[\underbrace{\left[\hat{R_{R}} G\left(\underline{R}, \underline{R}^{\prime}\right)\right]}_{\int_{V^{N}}\left[F\left(\underline{R}, \underline{R}^{\prime \prime}\right)\right] G\left(\underline{R}^{\prime \prime}, \underline{R}^{\prime}\right) d \underline{R}^{\prime \prime}} \psi\left(\underline{R}^{\prime}\right) d \underline{R}^{\prime} \\
&=\int_{V^{N}}\left\{\int_{V^{N}} F\left(\underline{R}, \underline{R}^{\prime \prime}\right) G\left(\underline{R}^{\prime \prime}, \underline{R}^{\prime}\right) d \underline{R}^{\prime \prime}\right\} \psi\left(\underline{R}^{\prime}\right) d \underline{R}^{\prime} \\
&=\int_{V^{N}} O\left(\underline{R}, \underline{R}^{\prime}\right) \psi\left(\underline{R}^{\prime}\right) d \underline{R}^{\prime} \\
& \rightarrow O\left(\underline{R}, \underline{R}^{\prime}\right)=\int_{V^{N}} F\left(\underline{R}, \underline{R}^{\prime \prime}\right) G\left(\underline{R}^{\prime \prime}, \underline{R}^{\prime}\right) d \underline{R}^{\prime \prime}(51) \tag{51}
\end{align*}
$$

for the product $\hat{O}=\hat{F} \hat{G}$. This is a convolution integral of $F\left(\underline{R}, \underline{R}^{\prime \prime}\right)$ and $G\left(\underline{R}^{\prime \prime}, \underline{R}^{\prime}\right)$.
For simplification of notation, set $\hat{U}=e^{-\beta \hat{H}}$, i.e. the unnormalized density operator. The unnormalized density matrix is

$$
U\left(\underline{R}, \underline{R}^{\prime}\right)=Z W\left(\underline{R}, \underline{R}^{\prime}\right) .
$$

We can set

$$
\hat{U}=e^{-q \beta \hat{H}} e^{-(1-q) \beta \hat{H}} .
$$

The two operators in the exponentials commute, so we can combine the two exponentials.

$$
\hat{U}=e^{-q \beta \hat{H}-\beta \hat{H}+q \beta \hat{H}}=e^{-\beta \hat{H}}
$$

In general, $e^{\hat{F}+\hat{G}} \neq e^{\hat{F}} e^{\hat{G}}$ for non-commuting operators \hat{F} and \hat{G}.

$$
U\left(\underline{R}, \underline{R}^{\prime} ; \beta\right)=\int_{V^{N}} U\left(\underline{R}, \underline{R}^{\prime \prime} ; q \beta\right) U\left(\underline{R}^{\prime \prime}, \underline{R}^{\prime} ;(1-q) \beta\right) d \underline{R}^{\prime \prime}
$$

$U\left(\underline{R}, \underline{R}^{\prime} ; \beta\right)$ are the matrix elements of $e^{-\beta \hat{H}}, U\left(\underline{R}, \underline{R}^{\prime \prime} ; q \beta\right)$ are the matrix elements of $e^{-q \beta \hat{H}}$ and $U\left(\underline{R}^{\prime \prime}, \underline{R}^{\prime} ;(1-q) \beta\right)$ are the matrix elements of $e^{-(1-q) \beta \hat{H}}$.

For $0<q<1$,

$$
q \beta=k_{B}^{-1} \frac{q}{T}=\frac{1}{k_{B} T_{q}},
$$

where $T_{q}=\frac{T}{q}>T$, and

$$
(1-q) \beta=k_{B}{ }^{-1} \frac{1-q}{T}=\frac{1}{k_{B} T_{1-q}}
$$

where $T_{1-q}=\frac{T}{1-q}>T$.
Equation 52 represents the matrix elements $U(\underline{R}, \underline{R} ; \beta)$ of $e^{-\beta \hat{H}}$ at temperature T in the form of a convolution of matrix elements $U\left(\underline{R}, \underline{R}^{n} ; q \beta\right)$ of $e^{-q \beta \hat{H}}$ and $U\left(\underline{R}^{n}, \underline{R}^{\prime} ;(1-q) \beta\right)$ of $e^{-(1-q) \beta \hat{H}}$ at the higher effective temperatures T_{q} and T_{1-q}.

Apply equation 52 successively M times.

$$
\begin{aligned}
U\left(\underline{R}, \underline{R}^{\prime} ; \beta\right) & =\int_{V^{N}} U\left(\underline{R}, \underline{R}_{1} ; \frac{\beta}{M+1}\right) U\left(\underline{R}_{1}, \underline{R}^{\prime} ; \frac{M}{M+1} \beta\right) d \underline{R}_{1} \\
& =\int_{V^{N}} \int_{V^{N}} U\left(\underline{R}, \underline{R}_{1} ; \frac{\beta}{M+1}\right) U\left(\underline{R}_{1}, \underline{R}_{2} ; \frac{\beta}{M+1}\right) U\left(\underline{R}_{2}, \underline{R}^{\prime} ; \frac{M-1}{M+1} \beta\right) d \underline{R}_{1} d \underline{R}_{2} \\
& =\int_{V^{N}} \int_{V^{N}} \int_{V^{N}} U\left(\underline{R}, \underline{R}_{1} ; \frac{\beta}{M+1}\right) U\left(\underline{R}_{1}, \underline{R}_{2} ; \frac{\beta}{M+1}\right) \\
& \times U\left(\underline{R}_{2}, \underline{R}_{3} ; \frac{\beta}{M+1}\right) U\left(\underline{R}_{3}, \underline{,}^{\prime} ; \frac{M-2}{M+1} \beta\right) d \underline{R}_{1} d \underline{R}_{2} d \underline{R}_{3}
\end{aligned}
$$

Repeating this procedure M times yields

$$
\begin{equation*}
U\left(\underline{R}, \underline{R}^{\prime} ; \beta\right)=\int_{V^{N}} \cdots \int_{V^{N}} \prod_{v=0}^{M} U\left(\underline{R}_{v}, \underline{R}_{v+1} ; \frac{\beta}{M+1}\right) d \underline{R}_{1} \ldots d \underline{R}_{M} \tag{53}
\end{equation*}
$$

This is a $3 N M$-dimensional integration, with M integrations. By definition, $\underline{R}_{0}=\underline{R}$, and $\underline{R}_{M+1}=\underline{R}^{\prime} . U\left(\underline{R}, \underline{R}^{\prime} ; \beta\right)$ is given here in terms of $U\left(\underline{R}_{v}, \underline{R}_{v+1} ; \frac{\beta}{M+1}\right)$ at the higher effective temperature $(M+1) T$.

Illustration:

For any $\underline{R}_{1}, \underline{R}_{2}, \ldots, \underline{R}_{M}$ the set of $M 3 N$-dimensional configurations $\underline{R}_{1}, \underline{R}_{2}, \ldots, \underline{R}_{M}$ may be thought of as a path, taken at the discrete imaginary time steps $v=1,2, \ldots, M$ leading from the initial configuration \underline{R} to the final configuration \underline{R}^{\prime}. The intermediate configurations $\underline{R}_{1}, \underline{R}_{2}, \ldots, \underline{R}_{M}$ are all integrated over all possible $3 N$-dimensional configurations.

The $M 3 N$-dimensional integrations in equation 52 correspond to an integral over all discrete paths (at imaginary times $v=1,2, \ldots, M$) connecting in $3 N$-dimensional configuration space \underline{R} and \underline{R}^{\prime}. Equation 52 is the discrete imaginary time path integral representation of $U\left(\underline{R}, \underline{R}^{\prime} ; \beta\right)$ (Feynman path integral).

The purpose of all of this is to make M large enough so that one can insert the known high-temperature limit for $U\left(\underline{R}_{v}, \underline{R}_{v+1} ; \frac{\beta}{M+1}\right)$ at the effective temperature $(M+1) T$.

3.1 High-Temperature Limit of the Density Matrix

The Hamiltonian is the sum of the kinetic energy and the potential energy,

$$
\hat{H}=\hat{T}+\hat{V} .
$$

The equation

$$
\begin{equation*}
e^{-\beta \hat{H}}=e^{-\beta \hat{\gamma}} e^{-\beta \hat{V}} \tag{54}
\end{equation*}
$$

holds for $\beta \ll 1$.

$$
U\left(\underline{R}, \underline{R}^{\prime}\right)=\int_{V^{N}} F\left(\underline{R}, \underline{R} \underline{R}^{\prime \prime}\right) G\left(\underline{R}^{\prime \prime}, \underline{R}^{\prime}\right) d \underline{R}^{\prime \prime}
$$

Use equation (51), with $\hat{O}=e^{-\beta \hat{H}}=\hat{F} \hat{G}$, where here $\hat{F}=e^{-\beta \hat{T}}$ and $\hat{G}=e^{-\beta \hat{V}}$. $O\left(\underline{R}, \underline{R}^{\prime}\right)=U\left(\underline{R}, \underline{R}^{\prime}\right) . F\left(\underline{R}, \underline{R}^{\prime \prime}\right)$ are the coordinate space matrix elements of $e^{-\beta \hat{T}}$, and $G\left(\underline{R}^{\prime \prime}, \underline{R}^{\prime}\right)$ are the coordinate space matrix elements of $e^{-\beta \hat{V}}$.
Using equation (48),

$$
\begin{align*}
& G\left(\underline{R}^{\prime \prime}, \underline{R}^{\prime}\right)=e^{-\beta \hat{V}_{\underline{R}^{\prime}}} \delta\left(\underline{R}^{\prime \prime}-\underline{R}^{\prime}\right)=e^{-\beta V\left(\underline{R}^{\prime \prime}\right)} \delta\left(\underline{R}^{\prime \prime}-\underline{R}^{\prime}\right) \\
& G\left(\underline{R}^{\prime \prime}, \underline{R}^{\prime}\right)=e^{-\frac{\beta}{2}\left(V\left(\underline{R}^{\prime \prime}\right)+V\left(\underline{R}^{\prime}\right)\right)} \delta\left(\underline{R} \underline{R}^{\prime \prime}-\underline{R}^{\prime}\right)(55) \tag{55}\\
& F(\underline{R}, \underline{R})=e^{-\beta \hat{I}} \delta\left(\underline{R}-\underline{R}^{\prime \prime}\right)
\end{align*}
$$

Write $\delta\left(\underline{R}-\underline{R}^{\prime \prime}\right)$ in terms of the orthonormalized eigenfunctions of \hat{T}.

$$
\hat{T} \psi(\underline{R})=-\sum_{i=1}^{N} \frac{\hbar^{2}}{2 m} \nabla_{i}{ }^{2} \psi(\underline{R})=T \psi(\underline{R})
$$

For a sum of commuting one-body operators like $-\frac{\hbar^{2}}{2 m} \nabla_{i}^{2}$ we have

$$
\begin{align*}
& \psi(\underline{R})=\phi_{1}\left(\underline{r}_{1}\right) \phi_{2}\left(\underline{r}_{2}\right) \ldots \phi_{N}\left(\underline{r}_{N}\right) \\
& T=\sum_{i=1}^{N} T_{i} \\
& \hat{T}_{i} \phi_{i}\left(\underline{r}_{i}\right)=-\frac{\hbar^{2}}{2 m} \nabla_{i}^{2} \phi_{i}\left(\underline{r}_{i}\right)=T_{i} \phi_{i}\left(\underline{r}_{i}\right) \\
& \psi(\underline{R})=\prod_{i=1}^{N} \phi_{i}\left(\underline{r}_{i}\right) \tag{57}\\
& \hat{T} \psi(\underline{R})=\sum_{i=1}^{N} T_{i} \psi(\underline{R}) \tag{58}\\
& \phi_{i}\left(\underline{r}_{i}\right)=\left(\frac{1}{2 \pi}\right)^{3 / 2} e^{i k_{i} \underline{r}_{i}}(59) \tag{59}
\end{align*}
$$

where $\underline{k}_{i}=\left(k_{i}^{x}, k_{i}^{y}, k_{i}^{z}\right)$, any of which can assume values from $-\infty$ to $+\infty$.

$$
\left(\frac{1}{2 \pi}\right)^{3} \int e^{i\left(\underline{k}_{i}-\underline{k}_{i}\right) \underline{r}_{i}} d \underline{r}_{i}=\delta\left(\underline{k}_{i}-\underline{k}_{i}^{\prime}\right)
$$

$$
\psi_{\underline{k}}(\underline{R})=\left(\frac{1}{2 \pi}\right)^{3 N / 2} \prod_{i=1}^{N} e^{i \underline{k}_{i} \cdot r_{i}}
$$

where $\underline{k}=\left(\underline{k}_{1}, \underline{k}_{2}, \ldots, \underline{k}_{N}\right)$

$$
\begin{aligned}
& \int \psi_{\underline{k}} *(\underline{R}) \psi_{\underline{k}}\left(\underline{R}^{\prime \prime}\right) d \underline{k}=\delta\left(\underline{R}-\underline{R}^{\prime \prime}\right) \\
& e^{-\beta \hat{T}_{\underline{R}}} \delta\left(\underline{R}-\underline{R}^{\prime \prime}\right)=\left(\frac{1}{2 \pi}\right)^{3 N} \int e^{-\beta \hat{T}_{\underline{\underline{r}}}} e^{i \underline{k} \cdot \underline{R}} e^{-i \underline{i k} \cdot \underline{R}^{\prime \prime}} d \underline{k} \\
&=\left(\frac{1}{2 \pi}\right)^{3 N} \int e^{-\frac{\hbar^{2} \beta k^{2}}{2 m}} e^{i \underline{k}\left(\underline{R}-\underline{R}^{\prime \prime}\right)} d \underline{k}
\end{aligned}
$$

where $\underline{k}=\left(\underline{k}_{1}, \underline{k}_{2}, \ldots, \underline{k}_{N}\right)$ and $k^{2}=\sum_{i=1}^{N} k_{i}^{2}$. This is a 3 N -dimensional Gaussian integral

$$
\begin{aligned}
& F\left(\underline{R}, \underline{R}^{\prime \prime}\right)=\left(\frac{m}{2 \pi \beta \hbar^{2}}\right)^{3 N / 2} \exp \left\{-\frac{m}{2 \beta \hbar^{2}}\left(\underline{R}-\underline{R}^{\prime \prime}\right)^{2}\right\}(72) \\
& U\left(\underline{R}, \underline{R}^{\prime}\right)=\left(\frac{m}{2 \pi \beta \hbar^{2}}\right)^{3 N / 2} \exp \left\{-\frac{m}{2 \beta \hbar^{2}}\left(\underline{R}-\underline{R}^{\prime}\right)^{2}\right\} e^{-\frac{\beta}{2}\left[V(\underline{R})+V\left(\underline{R}^{\prime}\right)\right]}
\end{aligned}
$$

This is the classical high-temperature limit of the density matrix elements $U\left(\underline{R}, \underline{R^{\prime}}\right)$.

