$\hat{O} = \hat{F}\hat{G} = \text{product of operators } \hat{F} \text{ and } \hat{G} \text{ with matrix elements } F(\underline{R},\underline{R}') \text{ and } G(\underline{R},\underline{R}')$. What is $O(\underline{R},\underline{R}')$?

$$\hat{O}\psi(\underline{R}) = \int_{V^{N}} O(\underline{R}, \underline{R}') \psi(\underline{R}') d\underline{R}' = \hat{F} \underbrace{\hat{G}\psi(\underline{R})}_{\int_{V^{N}} G(\underline{R}, \underline{R}') \psi(\underline{R}') d\underline{R}'}$$

$$= \hat{F} \int_{V^{N}} G(\underline{R}, \underline{R}') \psi(\underline{R}') d\underline{R}'$$

$$= \int_{V^{N}} \underbrace{\left[\hat{F}_{\underline{R}} G(\underline{R}, \underline{R}')\right]}_{\int_{V^{N}} [F(\underline{R}, \underline{R}'')] G(\underline{R}'', \underline{R}') d\underline{R}''} \psi(\underline{R}') d\underline{R}''$$

$$= \int_{V^{N}} \left\{ \int_{V^{N}} F(\underline{R}, \underline{R}'') G(\underline{R}'', \underline{R}') d\underline{R}'' \right\} \psi(\underline{R}') d\underline{R}''$$

$$= \int_{V^{N}} O(\underline{R}, \underline{R}') \psi(\underline{R}') d\underline{R}''$$

$$\to O(\underline{R}, \underline{R}') = \int_{V^{N}} F(\underline{R}, \underline{R}'') G(\underline{R}'', \underline{R}') d\underline{R}'' \tag{51}$$

for the product $\hat{O} = \hat{F}\hat{G}$. This is a convolution integral of $F(\underline{R},\underline{R}'')$ and $G(\underline{R}'',\underline{R}')$.

For simplification of notation, set $\hat{U}=e^{-\beta\hat{H}}$, i.e. the unnormalized density operator. The unnormalized density matrix is

$$U(\underline{R},\underline{R}') = ZW(\underline{R},\underline{R}')$$
.

We can set

$$\hat{U} = e^{-q\beta\hat{H}}e^{-(1-q)\beta\hat{H}}$$

The two operators in the exponentials commute, so we can combine the two exponentials.

$$\hat{U} = e^{-q\beta\hat{H} - \beta\hat{H} + q\beta\hat{H}} = e^{-\beta\hat{H}}$$

In general, $e^{\hat{F}+\hat{G}} \neq e^{\hat{F}}e^{\hat{G}}$ for non-commuting operators \hat{F} and \hat{G} .

$$U(\underline{R},\underline{R}';\beta) = \int_{V^{N}} U(\underline{R},\underline{R}'';q\beta) U(\underline{R}'',\underline{R}';(1-q)\beta) d\underline{R}''$$
 (52)

 $U(\underline{R},\underline{R}';\beta)$ are the matrix elements of $e^{-\beta\hat{H}}$, $U(\underline{R},\underline{R}'';q\beta)$ are the matrix elements of $e^{-q\beta\hat{H}}$ and $U(\underline{R}'',\underline{R}';(1-q)\beta)$ are the matrix elements of $e^{-(1-q)\beta\hat{H}}$.

For 0 < q < 1,

$$q\beta = k_B^{-1} \frac{q}{T} = \frac{1}{k_B T_q},$$

where $T_q = \frac{T}{q} > T$, and

$$(1-q)\beta = k_B^{-1} \frac{1-q}{T} = \frac{1}{k_B T_{1-q}}$$

where
$$T_{1-q} = \frac{T}{1-a} > T$$
.

Equation 52 represents the matrix elements $U(\underline{R},\underline{R}';\beta)$ of $e^{-\beta\hat{H}}$ at temperature T in the form of a convolution of matrix elements $U(\underline{R},\underline{R}'';q\beta)$ of $e^{-q\beta\hat{H}}$ and $U(\underline{R}'',\underline{R}';(1-q)\beta)$ of $e^{-(1-q)\beta\hat{H}}$ at the higher effective temperatures T_q and T_{1-q} .

Apply equation 52 successively M times.

$$U(\underline{R}, \underline{R}'; \beta) = \int_{V^{N}} U\left(\underline{R}, \underline{R}_{1}; \frac{\beta}{M+1}\right) U\left(\underline{R}_{1}, \underline{R}'; \frac{M}{M+1}\beta\right) d\underline{R}_{1}$$

$$= \int_{V^{N}} \int_{V^{N}} U\left(\underline{R}, \underline{R}_{1}; \frac{\beta}{M+1}\right) U\left(\underline{R}_{1}, \underline{R}_{2}; \frac{\beta}{M+1}\right) U\left(\underline{R}_{2}, \underline{R}'; \frac{M-1}{M+1}\beta\right) d\underline{R}_{1} d\underline{R}_{2}$$

$$= \int_{V^{N}} \int_{V^{N}} \int_{V^{N}} U\left(\underline{R}, \underline{R}_{1}; \frac{\beta}{M+1}\right) U\left(\underline{R}_{1}, \underline{R}_{2}; \frac{\beta}{M+1}\right)$$

$$\times U\left(\underline{R}_{2}, \underline{R}_{3}; \frac{\beta}{M+1}\right) U\left(\underline{R}_{3}, \underline{R}'; \frac{M-2}{M+1}\beta\right) d\underline{R}_{1} d\underline{R}_{2} d\underline{R}_{3}$$

Repeating this procedure M times yields

$$U(\underline{R},\underline{R}';\beta) = \int_{V^N} \dots \int_{V^N} \prod_{\nu=0}^M U\left(\underline{R}_{\nu},\underline{R}_{\nu+1};\frac{\beta}{M+1}\right) d\underline{R}_1 \dots d\underline{R}_M$$
 (53)

This is a 3NM -dimensional integration, with M integrations. By definition, $\underline{R}_0 = \underline{R}$, and $\underline{R}_{M+1} = \underline{R}'$. $U(\underline{R},\underline{R}';\beta)$ is given here in terms of $U(\underline{R}_{\nu},\underline{R}_{\nu+1};\frac{\beta}{M+1})$ at the higher effective temperature (M+1)T.

Illustration:

For any $\underline{R}_1, \underline{R}_2, ..., \underline{R}_M$ the set of M 3N – dimensional configurations $\underline{R}_1, \underline{R}_2, ..., \underline{R}_M$ may be thought of as a path, taken at the discrete imaginary time steps v = 1, 2, ..., M leading from the initial configuration \underline{R} to the final configuration \underline{R}' . The intermediate configurations $\underline{R}_1, \underline{R}_2, ..., \underline{R}_M$ are all integrated over all possible 3N – dimensional configurations.

The M 3N – dimensional integrations in equation 52 correspond to an integral over all discrete paths (at imaginary times v = 1, 2, ..., M) connecting in 3N – dimensional configuration space \underline{R} and \underline{R}' . Equation 52 is the discrete imaginary time path integral representation of $U(\underline{R}, \underline{R}'; \beta)$ (Feynman path integral).

The purpose of all of this is to make M large enough so that one can insert the known high-temperature limit for $U\left(\underline{R}_{\nu},\underline{R}_{\nu+1};\frac{\beta}{M+1}\right)$ at the effective temperature (M+1)T.

3.1 High-Temperature Limit of the Density Matrix

The Hamiltonian is the sum of the kinetic energy and the potential energy,

$$\hat{H} = \hat{T} + \hat{V}.$$

The equation

$$e^{-\beta\hat{H}} = e^{-\beta\hat{T}}e^{-\beta\hat{V}} \tag{54}$$

holds for $\beta << 1$.

$$U(\underline{R},\underline{R}') = \int_{V^N} F(\underline{R},\underline{R}'') G(\underline{R}'',\underline{R}') d\underline{R}''$$

Use equation (51), with $\hat{O} = e^{-\beta \hat{H}} = \hat{F}\hat{G}$, where here $\hat{F} = e^{-\beta \hat{T}}$ and $\hat{G} = e^{-\beta \hat{V}}$. $O(\underline{R},\underline{R}') = U(\underline{R},\underline{R}')$. $F(\underline{R},\underline{R}'')$ are the coordinate space matrix elements of $e^{-\beta \hat{T}}$, and $G(\underline{R}'',\underline{R}')$ are the coordinate space matrix elements of $e^{-\beta \hat{V}}$.

Using equation (48),

$$G(\underline{R}'',\underline{R}') = e^{-\beta \hat{V}_{\underline{R}''}} \delta(\underline{R}'' - \underline{R}') = e^{-\beta V(\underline{R}'')} \delta(\underline{R}'' - \underline{R}')$$

$$G(\underline{R}'',\underline{R}') = e^{-\frac{\beta}{2}(V(\underline{R}'') + V(\underline{R}'))} \delta(\underline{R}'' - \underline{R}') \quad (55)$$

$$F(\underline{R},\underline{R}'') = e^{-\beta \hat{T}} \delta(\underline{R} - \underline{R}'')$$

Write $\delta(\underline{R}-\underline{R}")$ in terms of the orthonormalized eigenfunctions of \hat{T} .

$$\hat{T}\psi(\underline{R}) = -\sum_{i=1}^{N} \frac{\hbar^{2}}{2m} \nabla_{i}^{2}\psi(\underline{R}) = T\psi(\underline{R})$$

For a sum of commuting one-body operators like $-\frac{\hbar^2}{2m}\nabla_i^2$ we have

$$\psi(\underline{R}) = \phi_{1}(\underline{r}_{1})\phi_{2}(\underline{r}_{2})...\phi_{N}(\underline{r}_{N})$$

$$T = \sum_{i=1}^{N} T_{i}$$

$$\hat{T}_{i}\phi_{i}(\underline{r}_{i}) = -\frac{\hbar^{2}}{2m}\nabla_{i}^{2}\phi_{i}(\underline{r}_{i}) = T_{i}\phi_{i}(\underline{r}_{i}) \quad (56)$$

$$\psi(\underline{R}) = \prod_{i=1}^{N}\phi_{i}(\underline{r}_{i}) \quad (57)$$

$$\hat{T}\psi(\underline{R}) = \sum_{i=1}^{N} T_{i}\psi(\underline{R}) \quad (58)$$

$$\phi_{i}(\underline{r}_{i}) = \left(\frac{1}{2\pi}\right)^{\frac{3}{2}} e^{i\underline{k}_{i}\cdot\underline{r}_{i}} \quad (59)$$

where $\underline{k}_i = (k_i^x, k_i^y, k_i^z)$, any of which can assume values from $-\infty$ to $+\infty$.

$$\left(\frac{1}{2\pi}\right)^{3}\int e^{i(\underline{k}_{i}-\underline{k}_{i}')\underline{r}_{i}}d\underline{r}_{i}=\delta(\underline{k}_{i}-\underline{k}_{i}')$$

$$\psi_{\underline{k}}(\underline{R}) = \left(\frac{1}{2\pi}\right)^{3N/2} \prod_{i=1}^{N} e^{i\underline{k}_{i} \cdot \underline{r}_{i}}$$
where $\underline{k} = (\underline{k}_{1}, \underline{k}_{2}, ..., \underline{k}_{N})$

$$\int \psi_{\underline{k}} * (\underline{R}) \psi_{\underline{k}}(\underline{R}'') d\underline{k} = \delta(\underline{R} - \underline{R}'')$$

$$e^{-\beta \hat{T}_{\underline{R}}} \delta(\underline{R} - \underline{R}'') = \left(\frac{1}{2\pi}\right)^{3N} \int e^{-\beta \hat{T}_{\underline{R}}} e^{i\underline{k} \cdot \underline{R}} e^{-i\underline{k} \cdot \underline{R}''} d\underline{k}$$

$$= \left(\frac{1}{2\pi}\right)^{3N} \int e^{-\frac{\hbar^{2} \beta k^{2}}{2m}} e^{i\underline{k}(\underline{R} - \underline{R}'')} d\underline{k}$$

where $\underline{k} = (\underline{k}_1, \underline{k}_2, ..., \underline{k}_N)$ and $k^2 = \sum_{i=1}^N k_i^2$. This is a 3N-dimensional Gaussian integral

$$F(\underline{R},\underline{R}'') = \left(\frac{m}{2\pi\beta\hbar^2}\right)^{3N/2} \exp\left\{-\frac{m}{2\beta\hbar^2} \left(\underline{R} - \underline{R}''\right)^2\right\} (72)$$

$$U(\underline{R},\underline{R}') = \left(\frac{m}{2\pi\beta\hbar^2}\right)^{3N/2} \exp\left\{-\frac{m}{2\beta\hbar^2} \left(\underline{R} - \underline{R}'\right)^2\right\} e^{-\frac{\beta}{2}\left[V(\underline{R}) + V(\underline{R}')\right]}$$

This is the classical high-temperature limit of the density matrix elements $U(\underline{R},\underline{R}')$.