Contents:

- 1. Basic Formal Concepts
 - 1.1. The Many-Body Hamiltonian
 - 1.2. The Many-Body Density Operator
 - 1.3. Density Matrix in Coordinate Space
- 2. Densities in Coordinate Space
 - 2.1. The One-Body Density
 - 2.2. The Two-Body Density
- 3. Path Integral Representation of the Density Matrix3.1 High-Temperature Limit of the Density Matrix

1. Basic Formal Concepts

We have *N* identical particles of mass *m*. Internal degrees of freedom and special extent are neglected. The position variable of particle *i* $(1 \le i \le N)$ in 3D space is $\underline{r}_i = (x_i, y_i, z_i)$. $\underline{R} = (\underline{r}_1, \underline{r}_2, ..., \underline{r}_N) = (x_1, y_1, z_1, ..., x_N, y_N, z_N)$ is a 3*N*-dimensional vector which holds the position variables of all of the *N* particles in 3D space.

NB: We will always use right-handed frames of reference.

The gradient, or Nabla operator, of particle i is

$$\nabla_i = \left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial y_i}, \frac{\partial}{\partial z_i}\right).$$

Applied to a function, this will provide a 3D vector

$$\nabla_i f\left(\dots,\underline{r}_i,\dots\right) = \left(\frac{\partial f}{\partial x_i},\frac{\partial f}{\partial y_i},\frac{\partial f}{\partial z_i}\right).$$

Equivalently,

$$\nabla_{i}f = \begin{pmatrix} \frac{\partial f}{\partial x_{i}} \\ \frac{\partial f}{\partial y_{i}} \\ \frac{\partial f}{\partial z_{i}} \end{pmatrix}.$$

The Laplace operator for particle i is

$$\nabla_i^2 = \nabla_i \cdot \nabla_i = \left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial y_i}, \frac{\partial}{\partial z_i}\right) \left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial y_i}\right) = \frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial z_i^2},$$

where the dot represents the scalar product. This provides a scalar.

Applied to a function, this is

$$\nabla_i^2 f\left(\dots,\underline{r}_i,\dots\right) = \frac{\partial^2 f}{\partial x_i^2} + \frac{\partial^2 f}{\partial y_i^2} + \frac{\partial^2 f}{\partial z_i^2}.$$

The relative position vector between two particles is

$$\underline{r}_{ij} = \underline{r}_i - \underline{r}_j = \begin{pmatrix} x_i - x_j \\ y_i - y_j \\ z_i - z_j \end{pmatrix},$$

which points from \underline{r}_j to \underline{r}_i . The distance between these two particles is

$$r_{ij} = |\underline{r}_{i} - \underline{r}_{j}| = |\underline{r}_{ij}| = \sqrt{(x_{i} - x_{j})^{2} + (y_{i} - y_{j})^{2} + (z_{i} - z_{j})^{2}}$$

Every particle *i* interacts with every other particle $j \neq i$ via a central pairwise (only consider pairs of particles, i.e. 2-body interactions) central potential $v(r_{ij})$, which depends only on the distance r_{ij} and not on the direction.

A typical 2-body potential $v(r_{ij})$ is the Lennard-Jones potential

$$v(r_{ij}) = 4\varepsilon \left(\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right)$$

where the constants ε and σ depend on the material. This is used for rare gas elements *He*, *Ne*, *Ar*, *Xe* and *H*₂.

The operator $V(\underline{R})$ of the internal potential energy is

$$V(\underline{R}) = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} v(r_{ij}) = \sum_{i< j=1}^{N} v(r_{ij}) = \frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j=1\\j\neq i}}^{N} v(r_{ij}) = \frac{1}{2} \sum_{\substack{i\neq j=1\\j\neq i}}^{N} v(r_{ij})$$
(1)

This is a sum over all distinct pairs of particles, where $i \neq j$ as a particle dos not interact with itself. The latter two have factors of a half as they count each interaction twice.

Example for N = 3:

As $r_{ji} = |\underline{r}_j - \underline{r}_i| = |\underline{r}_i - \underline{r}_j| = r_{ij}$, $r_{21} = r_{12}$, $r_{31} = r_{13}$, $r_{32} = r_{23}$, and hence the potentials are the same in each case. Hence,

$$V(\underline{R}) = \frac{1}{2} \sum_{i=1}^{3} \sum_{\substack{j=1 \ j \neq i}}^{3} v(r_{ij}) = v(r_{12}) + v(r_{13}) + v(r_{23})$$

So the factor $\frac{1}{2}$ in $V(\underline{R}) = \frac{1}{2} \sum_{i \neq j=1}^{N} v(r_{ij})$ is due to every distinct pair $\{i, j\}$ $(i \neq j)$ is contained twice in $\sum_{i \neq j=1}^{N} v(r_{ij})$.

Let $\psi(\underline{R}) = \psi(\underline{r}_1, \underline{r}_2, ..., \underline{r}_N)$ be the many-body wave function that depends on the coordinates $\underline{r}_1, \underline{r}_2, ..., \underline{r}_N$ of the *N* particles. To act with an operator $V(\underline{R})$ on $\psi(\underline{R})$ means that we multiply $\psi(\underline{R})$ with $V(\underline{R})$ to obtain the result $V(\underline{R})\psi(\underline{R})$. The operator of internal potential energy is an operator of multiplication with the total potential energy $V(\underline{R})$.

The operator \hat{T} of the (non-relativistic) kinetic energy is classically $T = \sum_{i=1}^{N} \frac{p_i^2}{2m^2}$ where $p_i^2 = \underline{p}_i \cdot \underline{p}_i = p_i^{(x)2} + p_i^{(y)2} + p_i^{(z)2}$, where $\underline{p}_i = (p_i^{(x)}, p_i^{(y)}, p_i^{(z)})$ is the threedimensional linear momentum of particle *i*. We want to turn this into quantum mechanics, i.e. $T \to \hat{T}$. Replace $\underline{p}_i \to \underline{\hat{p}}_i = -i\hbar\nabla_i$ to get the momentum operator of particle *i*. $p_i^2 = p_i \cdot p_i \to (-i\hbar\nabla_i)(-i\hbar\nabla_i) = -\hbar^2\nabla_i^2$. Hence,

$$\hat{T} = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \nabla_i^2 = \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m} \nabla_i^2 \right) = \sum_{i=1}^{N} \frac{\hat{P}_i^2}{2m}.$$
(2)

 $\frac{\hat{p}_i^2}{2m} = -\frac{\hbar^2}{2m} \nabla_i^2$ is the operator of the kinetic energy of particle *i*.

NB: $\hbar = \frac{h}{2\pi}$, where *h* is Planck's constant.