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One is forced to make a choice of vacuum, and the resulting phenomena is known as 
spontaneous symmetry breaking (SSB). 
 
1. Discrete Goldstone Model 
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 there exists two minima ! = ",#"  which are related by Z

2
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What we do is choose one of the vacua, and expand around it. ! = " +# . 
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NB: if we had chosen ! = "# +$  then m!

2  would be the same, but the interaction 
Lagrangian would have changed slightly. 
 
We say that the symmetry is spontaneously broken by the vacuum and the resulting 
particle has mass 2!"2 . 
 
2. U(1) Goldstone Model 
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!  is a global symmetry of the Lagrangian, so it is U 1( )  symmetric. 
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This is sometimes called the “Mexican Hat Potential”. 
There exists vacua along the circle S1( )  in the complex plane !

1
,!

2( )given by 

! = " , all of which are related by the action of the symmetry group !" e
i#
! . 

 
As before, to find the theory about the vacuum, choose one point in the vacuum and 
expand around it. 
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There are two particles !
1
 and !

2
, but one is massless since there is no quadratic 

term for !
2

. 
 
The choice above is not unique. More generally, 
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where µij
= µ

ij
!( )  is the mass matrix. In order to find the particle masses, diagonalise 

µ
ij  and the eigenvalues would be 0, !"2 . 

 there are two particles, one with mass !"2  and the other which is massless. 
 
3. O(N) 
General case: 

L =
1

2
!µ"!

µ" #V "( )  

Potential is invariant under G , i.e. V g!( ) = V !( )  

Assume that min V !( ) = 0  and define the vacuum manifold 
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M
0
= ! :V !( ) = 0{ }  

Now assume that G  acts transitively on M
0
, that is, the action of G  generates the 

whole of M
0
 from any given point. 

 given any !
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0
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1
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2
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Define the stability group of a point a !M
0
 to be 

H
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Although H  varies with a , it does so in a simple way due to the transitivity property. 
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i.e. they are isomorphic. 
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This means that !
1
 and !

2
 are in the same coset of H  in G . 
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Expansion around ! = a +" , where V a( ) = 0;
!V

!"
a( ) = 0 . 
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Masses of the particles are the eigenvalues of µij . 
e.g. SO N( )! SO N "1( ) ; 1 massive, N !1   massless. 
 
N=3, G=SO(3) 
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SU 3( )  symmetry. 
Minima occurs when ! = "  

M
0
= ! : ! = "{ } # S2  

Any point on the vacuum manifold can be obtained from any other by a rotation. 
a = 0,0,!( )  

 H
a

 is the group of rotations about the 2nd axis (i.e. keep z fixed; can rotate around 
x, y freely). In general, it will be a SO 2( )  subgroup of SO 3( ) . 

G = SO 3( ) , H = SO 2( )   G
H

=
SO 3( )

SO 2( )
! S

2 . 

! = a +"  



PC 4772 – The Early Universe – Lectures 9 & 10 

4 

L =
1

2
!µ"!

µ" #
$

4
2a %& +& 2( )

2

=
1

2
!µ"!

µ" # $ ' %&( )
2

+ L
int

 

! =!
1
a +!

2
b +!

3
c  

where a,b,c( )  form an orthogonal triad a = b = c = !  
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 1 massive particle, 2 massless. 
 
3.3 Symmetry Restoration at High Temperature and the finite temperature 
effective potential 
(Finite temperature = non-zero temperature) 
The concept of Grand Unification suggests that the theory at very high temperatures is 
described by a simple Lie Group G  and that there have been a number of Phase 
Transitions which lead to the symmetry being broken to the standard model. 
G! H ! K ! ...! SU 3( ) " SU 2( ) "U 1( )! SU 3( ) "U 1( )  
The next-to last of these is the Weinberg-Salam model + QCD. The last is QCD + 
EM. 
 
3.3.1 Statistical Mechanics 
Thermodynamic Potential: 

! = "T logZ = E " TS " µN  
where S  is the entropy, µ  is the chemical potential. E ! TS . logZ  is the grand 
partition function. 
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where V
S

 is the volume, the positive case is for fermions and the negative case is for 
bosons. 
Free Energy µ = 0( ) : F = E ! TS = " µ = 0( ) . 
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3.3.2 Effective Potential 
The Lagrangians (e.g. Goldstone Model) studied so far are for a single field 
corresponding to possibly a number of particles related by a symmetry. But we like to 
couple these particles to a thermal heat bath of particles with temperature T . 
 
Basic Concept: There exists an effective potential which encompasses the Thermal 
corrections. 
 
It has been shown that the computation of these thermal corrections is the same as 
computing the free energy. Therefore: 

Veff !,T( ) = V !( ) + fn !,T( )
n

"  
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where fn !,T( ) =
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 for the nth particle. 
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3.3.3 Effective Potential of Goldstone Model with U(1) Symmetry 
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Eigenvalues give the masses: 
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where T
c
= 6!  is the critical temperature. 

For T > T
c
, meff

2
T( ) > 0   single minima and full U 1( )  symmetry. 

For T < T
c
, meff

2
T( ) < 0   spontaneous symmetry breaking, and there exists 

degenerate vacua. 
The symmetry is said to have been restored at high temperature and is broken at low 
temperature. 
 
3.4 Phase Transitions 
3.4.1 2nd Order Phase Transitions 
Consider 
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The parameter grows continuously with T  for T < T
c
 towards x = ! , which is 

characteristic of a second order phase transition. This is the only kind of phase 
transition we will discuss here. 


