One is forced to make a choice of vacuum, and the resulting phenomena is known as spontaneous symmetry breaking (SSB).

1. Discrete Goldstone Model

$$
L=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-V(\phi)
$$

where $\phi \in \mathbb{R}$ and $V(\phi)=V(-\phi)$, i.e. Z_{2}-symmetric. Choose $V(\phi)=\frac{\lambda}{4}\left(\phi^{2}-\eta^{2}\right)^{2}$.

\rightarrow there exists two minima $\phi=\eta,-\eta$ which are related by Z_{2} symmetry.
What we do is choose one of the vacua, and expand around it. $\phi=\eta+\psi$.

$$
\rightarrow V(\phi)=\frac{\lambda}{4}\left(2 \eta \psi+\psi^{2}\right)^{2}=\lambda \eta^{2} \psi^{2}+\lambda \eta \psi^{3}+\frac{\lambda}{4} \psi^{4}
$$

Compare this to $L=\frac{1}{2} \partial_{\mu} \psi \partial^{\mu} \psi-\frac{1}{2} m_{\psi}{ }^{2} \psi^{2}+L_{\text {int }}$:-

$$
\begin{gathered}
\rightarrow \frac{1}{2} m_{\psi}{ }^{2}=\lambda \eta^{2} \\
L_{\mathrm{int}}=-\lambda \eta \psi^{3}-\frac{\lambda}{4} \psi^{4}
\end{gathered}
$$

NB: if we had chosen $\phi=-\eta+\psi$ then $m_{\psi}{ }^{2}$ would be the same, but the interaction Lagrangian would have changed slightly.

We say that the symmetry is spontaneously broken by the vacuum and the resulting particle has mass $\sqrt{2 \lambda \eta^{2}}$.
2. U(1) Goldstone Model

$$
\begin{gathered}
L=\partial_{\mu} \Phi \partial^{\mu} \bar{\Phi}-\frac{\lambda}{4}\left(|\Phi|^{2}-\eta^{2}\right)^{2} \\
\Phi \in \mathbb{C} ; \Phi=\phi_{1}+i \phi_{2}
\end{gathered}
$$

$\Phi \rightarrow e^{i \alpha} \Phi$ is a global symmetry of the Lagrangian, so it is $U(1)$ symmetric.

This is sometimes called the "Mexican Hat Potential".
There exists vacua along the circle $\left(S^{1}\right)$ in the complex plane $\left(\phi_{1}, \phi_{2}\right)$ given by $|\phi|=\eta$, all of which are related by the action of the symmetry group $\Phi \rightarrow e^{i \alpha} \Phi$.

As before, to find the theory about the vacuum, choose one point in the vacuum and expand around it.

$$
\begin{gathered}
\Phi=\eta+\frac{1}{\sqrt{2}}\left(\psi_{1}+i \psi_{2}\right) \\
|\Phi|^{2}=\eta^{2}+\sqrt{2} \eta \psi_{1}+\frac{1}{2}\left(\psi_{1}^{2}+\psi_{2}^{2}\right) \\
L=\frac{1}{2} \partial_{\mu} \psi_{1} \partial^{\mu} \psi_{1}+\frac{1}{2} \partial_{\mu} \psi_{2} \partial^{\mu} \psi_{2}-\frac{1}{2} \lambda \eta^{2} \psi_{1}^{2}+O(3)
\end{gathered}
$$

There are two particles ψ_{1} and ψ_{2}, but one is massless since there is no quadratic term for ψ_{2}.

The choice above is not unique. More generally,

$$
\begin{gathered}
\Phi=\eta e^{i \alpha}+\frac{1}{\sqrt{2}}\left(\psi_{1}+i \psi_{2}\right) \text { for any } \alpha . \\
\rightarrow L=\frac{1}{2} \partial_{\mu} \psi_{1} \partial^{\mu} \psi_{1}+\frac{1}{2} \partial_{\mu} \psi_{2} \partial^{\mu} \psi_{2}+\frac{1}{2} \mu_{i j} \psi_{i} \psi_{j}+L_{\mathrm{int}}
\end{gathered}
$$

where $\mu_{i j}=\mu_{i j}(\alpha)$ is the mass matrix. In order to find the particle masses, diagonalise $\mu_{i j}$ and the eigenvalues would be $0, \lambda \eta^{2}$.
\rightarrow there are two particles, one with mass $\lambda \eta^{2}$ and the other which is massless.

3. $\mathrm{O}(\mathrm{N})$

General case:

$$
L=\frac{1}{2} \partial_{\mu} \underline{\phi} \partial^{\mu} \underline{\phi}-V(\underline{\phi})
$$

Potential is invariant under G, i.e. $V(g \underline{\phi})=V(\underline{\phi})$
Assume that $\min V(\underline{\phi})=0$ and define the vacuum manifold

$$
M_{0}=\{\phi: V(\underline{\phi})=0\}
$$

Now assume that G acts transitively on M_{0}, that is, the action of G generates the whole of M_{0} from any given point.
\rightarrow given any $\underline{\phi}_{1}, \underline{\phi}_{2} \in M_{0}, \exists \gamma \in G$ such that $\underline{\phi}_{1}=\gamma \underline{\phi}_{2}$.
Define the stability group of a point $\underline{a} \in M_{0}$ to be

$$
H_{\underline{a}}=\{h \in G: h \underline{a}=\underline{a}\}
$$

Although H varies with \underline{a}, it does so in a simple way due to the transitivity property.

$$
\begin{aligned}
\gamma \underline{a}_{1}= & \underline{a}_{2} \rightarrow H_{\underline{a}_{2}}=\gamma H_{\underline{\alpha}_{1}} \gamma^{-1} \\
& \rightarrow H_{\underline{\underline{a}}_{1}} \cong H_{\underline{a}_{2}}
\end{aligned}
$$

i.e. they are isomorphic.

Given $\underline{a} \in M_{0}, M_{0}=\{\gamma \underline{a}: \gamma \in G\}$.

$$
\gamma_{1} \underline{a}=\gamma_{2} \underline{a} \rightarrow \gamma_{2} \gamma_{1}^{-1} \in H
$$

This means that γ_{1} and γ_{2} are in the same coset of H in G.

$$
M=\frac{G}{H}
$$

Expansion around $\phi=\underline{a}+\underline{\psi}$, where $V(\underline{a})=0 ; \frac{\partial V}{\partial \phi}(\underline{a})=0$.

$$
L=\frac{1}{2} \partial_{\mu} \underline{\phi} \partial^{\mu} \underline{\phi}-\frac{1}{2} \mu_{i j} \psi_{i} \psi_{j}+L_{\mathrm{int}}(\underline{\psi})
$$

where $\mu_{i j}=\frac{\partial^{2} V}{\partial \phi_{i} \partial \phi_{j}}(\underline{a})$
Masses of the particles are the eigenvalues of $\mu_{i j}$.
e.g. $S O(N) \rightarrow S O(N-1) ; 1$ massive, $N-1$ massless.
$\mathrm{N}=3, \mathrm{G}=\mathrm{SO}(3)$

$$
\begin{gathered}
L=\frac{1}{2} \partial_{\mu} \underline{\phi}^{\mu} \underline{\phi}-\frac{\lambda}{4}\left(|\phi|^{2}-\eta^{2}\right)^{2} \\
\underline{\phi}=\left(\phi_{1}, \phi_{2}, \phi_{3}\right)
\end{gathered}
$$

$S U(3)$ symmetry.
Minima occurs when $|\phi|=\eta$

$$
M_{0}=\{\underline{\phi}:|\underline{\phi}|=\eta\} \cong S^{2}
$$

Any point on the vacuum manifold can be obtained from any other by a rotation.

$$
\underline{a}=(0,0, \eta)
$$

$\rightarrow H_{\underline{a}}$ is the group of rotations about the $2^{\text {nd }}$ axis (i.e. keep z fixed; can rotate around x, y freely). In general, it will be a $S O(2)$ subgroup of $S O(3)$.

$$
\begin{gathered}
G=S O(3), H=S O(2) \rightarrow \frac{G}{H}=\frac{S O(3)}{S O(2)} \cong S^{2} . \\
\underline{\phi}=\underline{a}+\underline{\psi}
\end{gathered}
$$

$$
\begin{gathered}
L=\frac{1}{2} \partial_{\mu} \underline{\phi} \partial^{\mu} \underline{\phi}-\frac{\lambda}{4}\left(2 \underline{a} \cdot \underline{\psi}+\underline{\psi}^{2}\right)^{2} \\
=\frac{1}{2} \partial_{\mu} \underline{\phi} \partial^{\mu} \underline{\phi}-\lambda(\underline{\alpha} \cdot \underline{\psi})^{2}+L_{\mathrm{int}} \\
\psi=\psi_{1} \underline{a}+\psi_{2} \underline{b}+\psi_{3} \underline{c}
\end{gathered}
$$

where $(\underline{a}, \underline{b}, \underline{c})$ form an orthogonal triad $|\underline{a}|=|\underline{b}|=|\underline{c}|=\eta$

$$
\rightarrow L=\frac{1}{2} \partial_{\mu} \underline{\phi} \partial^{\mu} \underline{\phi}-\lambda \eta^{2} \psi_{i}^{2}+L_{\mathrm{int}}
$$

$\rightarrow 1$ massive particle, 2 massless.

3.3 Symmetry Restoration at High Temperature and the finite temperature effective potential

(Finite temperature $=$ non-zero temperature)
The concept of Grand Unification suggests that the theory at very high temperatures is described by a simple Lie Group G and that there have been a number of Phase Transitions which lead to the symmetry being broken to the standard model.

$$
\overline{G \rightarrow H \rightarrow} K \rightarrow \ldots \rightarrow S U(3) \times S U(2) \times U(1) \rightarrow S U(3) \times U(1)
$$

The next-to last of these is the Weinberg-Salam model + QCD. The last is QCD + EM.

3.3.1 Statistical Mechanics

Thermodynamic Potential:

$$
\Omega=-T \log Z=E-T S-\mu N
$$

where S is the entropy, μ is the chemical potential. $E-T S . \log Z$ is the grand partition function.

$$
\log Z= \pm V_{S} \int d^{3} k \frac{1}{(2 \pi)^{3}} \log \left[1 \pm \exp \left\{\frac{-(E(k)-\mu)}{T}\right\}\right]
$$

where V_{S} is the volume, the positive case is for fermions and the negative case is for bosons.
Free Energy $(\mu=0): F=E-T S=\Omega(\mu=0)$.

$$
\rightarrow \frac{F}{V_{S}}=\mp \int \frac{d^{3} k}{(2 \pi)^{3}} \log \left[1 \pm \exp \left\{-\frac{E(k)}{T}\right\}\right]
$$

3.3.2 Effective Potential

The Lagrangians (e.g. Goldstone Model) studied so far are for a single field corresponding to possibly a number of particles related by a symmetry. But we like to couple these particles to a thermal heat bath of particles with temperature T.

Basic Concept: There exists an effective potential which encompasses the Thermal corrections.

It has been shown that the computation of these thermal corrections is the same as computing the free energy. Therefore:

$$
V_{e f f}(\underline{\phi}, T)=V(\underline{\phi})+\sum_{n} f_{n}(\phi, T)
$$

where $f_{n}(\phi, T)=\frac{F}{V}$ for the $\mathrm{n}^{\text {th }}$ particle.

$$
f_{n}(\phi, T)=\mp T \int \frac{d^{3} k}{(2 \pi)^{3}} \log \left[1 \pm \exp \left[-\frac{E(k)}{T}\right]\right]
$$

and $E(k)=\sqrt{k^{2}+m_{n}{ }^{2}(\phi)}$.
For Bosons,

$$
f_{n}=-\frac{\pi^{2}}{90} T^{4}+\frac{m_{n}^{2}(\phi)}{24} T^{2}+O\left(m_{n}^{4}\right)
$$

For Fermions,

$$
f_{n}=-\frac{7 \pi^{2}}{720} T^{4}+\frac{m_{n}^{2}(\phi)}{48} T^{2}+O\left(m_{n}^{4}\right)
$$

Hence,

$$
V_{e f f}(\phi, T)=V(\phi)+\frac{1}{24} m^{2}(\phi) T^{2}-\frac{\pi^{2}}{90} N T^{4}
$$

where $N=N_{B}+\frac{7}{8} N_{f}$, where N_{B} is the number of bosonic degrees of freedom and N_{f} is the number of dof for fermions.

$$
m^{2}(\phi)=\sum_{B} m_{n}^{2}(\phi)+\frac{1}{2} \sum_{f} m_{n}^{2}(\phi)
$$

3.3.3 Effective Potential of Goldstone Model with U(1) Symmetry

$$
L=\partial_{\mu} \Phi \partial^{\mu} \bar{\Phi}-V(\underline{\Phi})
$$

with $V(\Phi)=\frac{\lambda}{4}\left(|\Phi|^{2}-\eta^{2}\right)^{2}$.
$\Phi \in \mathbb{C} \rightarrow \Phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)$

$$
\begin{aligned}
L= & \frac{1}{2} \partial_{\mu} \phi_{1} \partial^{\mu} \phi_{1}+\frac{1}{2} \partial_{\mu} \phi_{2} \partial^{\mu} \phi_{2}-\frac{\lambda}{4}\left(\frac{1}{2}\left(\phi_{1}{ }^{2}+\phi_{2}{ }^{2}\right)-\eta^{2}\right)^{2} \\
& \rightarrow \frac{\partial^{2} V}{\partial \phi_{i} \partial \phi_{j}}=\frac{\lambda}{2}\left[\frac{1}{2}\left(\phi_{1}{ }^{2}+\phi_{2}{ }^{2}\right)-\eta^{2}\right] \delta_{i j}+\frac{\lambda}{2} \phi_{i} \phi_{j}
\end{aligned}
$$

NB: $|\phi|^{2}=\frac{1}{2}\left(\phi_{1}{ }^{2}+\phi_{2}{ }^{2}\right)$
Eigenvalues give the masses:

$$
\begin{gathered}
m_{1}^{2}(\phi)=\frac{\lambda}{2}\left(3|\phi|^{2}-\eta^{2}\right) \\
m_{2}^{2}(\phi)=\frac{\lambda}{2}\left(|\phi|^{2}-\eta^{2}\right)
\end{gathered}
$$

NB: If $|\phi|^{2}=\eta^{2}$, i.e. on the vacuum manifold, then $m_{1}{ }^{2}=\lambda \eta^{2}$ and $m_{2}{ }^{2}=0$.

$$
\begin{gathered}
\rightarrow V_{e f f}(\phi, T)=\frac{\lambda}{4}\left(|\phi|^{2}-\eta^{2}\right)^{2}+\frac{\lambda}{24}\left(2|\phi|^{2}-\eta^{2}\right) T^{2}-\frac{\pi^{2}}{45} T^{4} \\
\frac{1}{2} m_{e f f}^{2}=\text { coefficient of }|\phi|^{2}=\frac{\lambda}{12}\left(T^{2}-6 \eta^{2}\right)=\frac{\lambda}{12}\left(T^{2}-T_{c}^{2}\right)
\end{gathered}
$$

where $T_{c}=\sqrt{6} \eta$ is the critical temperature.
For $T>T_{c}, m_{e f f}^{2}(T)>0 \rightarrow$ single minima and full $U(1)$ symmetry.
For $T<T_{c}, m_{e f f}{ }^{2}(T)<0 \rightarrow$ spontaneous symmetry breaking, and there exists degenerate vacua.
The symmetry is said to have been restored at high temperature and is broken at low temperature.

3.4 Phase Transitions

3.4.1 $2^{\text {nd }}$ Order Phase Transitions

Consider

$$
\begin{gathered}
V_{e f f}(\phi, T)=\frac{1}{2} m_{e f f}{ }^{2}(T)(\phi)^{2}+\frac{\lambda}{4}(\phi)^{4} \\
m_{e f f}{ }^{2}=\frac{\lambda}{6}\left(T^{2}-6 \eta^{2}\right)
\end{gathered}
$$

Sketch the curve $f(x)=\frac{1}{2} m_{e f f}{ }^{2}(T) x^{2}+\frac{\lambda}{4} x^{4}, x>0$.
$f^{\prime}(x)=m_{e f f}{ }^{2} x+\lambda x^{3}$
$f^{\prime}(x)=0 \rightarrow x=0 \& x=-\frac{m_{e f f}^{2}}{\lambda}=\frac{1}{6}\left(T_{c}^{2}-T^{2}\right)$.
$f^{\prime \prime}(x)=m_{\text {eff }}{ }^{2}+3 \lambda x^{2}$
$x=0, f^{\prime \prime}(x)=m_{e f f}{ }^{2}$
$x=-\frac{m_{e f f}{ }^{2}}{\lambda}, f^{\prime \prime}(x)=-2 m_{e f f}{ }^{2}$
If $m_{e f f}{ }^{2}>0\left(T>T_{c}\right)$, then there exists a single minimum at $x=0$.
If $m_{\text {eff }}{ }^{2}<0\left(T<T_{c}\right)$, then there exists a maxima at $x=0$ and a minimum of $x=\frac{1}{\sqrt{6}}\left(T_{c}^{2}-T^{2}\right)^{1 / 2}$.
The parameter grows continuously with T for $T<T_{c}$ towards $x=\eta$, which is characteristic of a second order phase transition. This is the only kind of phase transition we will discuss here.

