PC 4772 — The Early Universe — Lectures 7 & 8

NB: de Sitter space is when the Hubble parameter H is constant.
(“Hubble parameter = constant universe”)
—> there are fluctuations in the scalar and tensor parts of the metric due to quantum

H .
mechanics. The scalar field fluctuates by 6¢ = P and the metric / tensor part of
T

H
gravity fluctuates by 6h = —.

21

Consider the inflationary potential.
V(¢) A

Slow Roll

1
1
1
1
1
1
1
:
¢:-rm‘ ¢!.’x.‘.’{ ¢
Universe reheats here

No QM - the whole universe reheats at the same time.
With QM — different regions reheat at different times due to the uncertainty in ¢ .

This means that they experience slightly more or slightly less inflation. Therefore
density fluctuations are created. The density contrast
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where Ot is the uncertainty in the time of reheating 6t = —.¢, and 7, is the expansion

timescale 7., = H™'. From these,

H
since 6@ = ey
T

Similarly, gravitational waves are imprinted with amplitude proportional to H .

Define the scalar power spectrum (density waves)
2
op H*
P, (k)= (—] ==,
p ¢

and the tensor power spectrum (gravitational waves)

P, (k)= (8h) = [i]

m,
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2
[NB: In general, P(k)o< |5 ]

During slow roll,

3H¢3:—d—v

d¢
oY= 8nG v
3
7
y_ v
—[P.(k)] v
mp, I
do
1
1 VA
[P ()]
m,
Where these expressions are evaluated at ¢ such that kK = aH , that is, when the

comoving wave number k crosses the horizon.

LAk _dd g - HA0__37GV
a ¢ av
do

where the approximation is for de Sitter space.

> d(logk)= —SnG%dgb

Vv
and k =k, exp —87th¢ deb

d¢
NB: kg, is the comoving wave number which left the horizon 60 e-foldings from the

end of inflation and returned at the present day.
kg = H,

and ¢, can be computed from 60 = 87G J.:w %dq) .

do
Now define the spectral indices ng and n, to be
d(log P (k
ng =1+ (Og s( ))
d(logk)
. d(logPT(k))
" d(logk)

i.e. Py(k)oc k"™, P, (k)< k" . These are typically evaluated at ¢, .
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| dV: 5
Example: V—Em o _d¢ m-g
v _m( o) y_m( ¢
> [A)] ny, (mp,] L) My (mp,)

d(logk)=—-4nGodd
Working out ¢, ;

60 = 27G (95> = ,.")

1
9 ¢60 z(lO—a)mw
(approx 2w =6)

Og = \/ﬁm Pl

Normalize to the observed fluctuations on the largest scales given by COBE, WMAP,
etc.

LIS
p
> [R(H)] =22 10
pl
> m=~10"Gev

P
NB: > 60 e-foldings required m < (%j m,, > the potential is very flat, and the

a

end

a

start

total number of e-foldings is around N,, = 10" > = ¢!, which is very large.
So inflation happened for much longer than it needed to — the universe is ultra-flat.

Remember that this is just for this model, which’s fairly naive.

d(logP,)= %; d(10gP,) =22
d(log PS) -~ 0.03: d(log PT) 0.2
d(logk) d(logk)

k=kg k=keo

So ng =0.97 and n, =0.02. WMAP measures n, =0.93+£0.03.
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3. Phase Transitions in the Early Universe
3.1 Simple Field Theory Models

We have already discussed the case of a real scalar field ¢ = ¢(x,t) € R as inflatons.
In Minkowski spacetime, the Lagrangian

L=03,0"0-V(¢)

1, 1.
=20 =2Vl -V (0)

EOM > |:|¢+d—V=O where |:|=a—2—V2
do ot

1
If V(¢)=—m’¢’ this leads to the Klein-Gordon equations for massive (i.e. with
2

: : : . : A
mass) bosonic particles. Adding a 4-point interaction (th (9)= Z¢4j leads to the

simplest Quantum Field Theory (QFT).

L 5., I ., A 4
e.g. V(¢):5m¢ +Vim(¢)=5m¢ +z¢ :

¢ b

S o

¢/' \¢

The interaction term corresponds to scattering!
We will discuss mainly classical behaviour of these fields with a little bit of QM
added in.

First note that V (¢) =V (-¢), and therefore the Lagrangian is Z, symmetric, that is,
it is symmetric under the action of the group Z, ={+1,—1}. This is a global symmetry
since the element of Z, is independent of position.

We would like to discuss more complicated fields (complex scalars, vectors) and
more complicated symmetry groups (U(1), SU(2), SO(N)).

(1) Complex Scalars
1 .
O = E(q)l +ig,)eC
where @ is its complex conjugate.
L=0,00"®-V (D)

EOM: |:|<I)+d—K:O
dod
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The kinetic term (the first part of the Lagrangian) is clearly symmetric under
® — ®'=¢® where o is a constant phase. If V(®) =V (¢®) Vo, then the model

is U(1) symmetric.

(2) Complex Vectors
(D:[(pl—i_i.q)ZJE(Cz
¢5+i0,
L=0,0'0"®-V (D)
where ® =@ . If U e SU(2), then the kinetic term is symmetric under
OO =UD.
0,0" 90 =0, | (UD) |0 (UP)=0,8'U U D =0,0'9"D
as UU=1.
We require that V(U®) =V (®)VU e SU(2), e.g. V(®)= %mzd>*<l)+ %A(CD*CD)Z :
(3) SO(N)
(I_) = (¢1’¢2""’¢N)
is a vector field.

L==0,0-0"®-V(D)

1
PR
where 0,®-9"®=0,9,0"9, =" VD
and the Lorentz index u.

2, 1.e. summations over both the field index i

This is SO(N) symmetric if V(g®) =V (®)Vg e SO(N).

NB: N=2

1
L= Ea,lq_)'a”q_)—v(q_))

1 1
=59.0:9"0 +-0,8,:0"0, =V (9,.4,)
Consider a scalar field ® = %(q&l + i¢2) :

L=0,00"®- V(D)

1 1
= an(pla#(pl + anq)zay‘pz - V(¢1’¢2)
- SO(2) is equivalent to U(1).
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(4) All symmetries we have discussed so far are global symmetries, that is the
elements of the symmetry groups are constant in space and time. We will consider a
simple example of a gauge (or local) symmetry which corresponds to a complex
scalar coupled to electromagnetism.

This 1s known as the Abelian Higgs Model.

L=D,®D"®~ v(|<1>|)——F F

where D, =09, —ieA, = covarient derivative, and F,, =d,A, —d A, is the field
strength tensor (of EM). A, = Gauge field =(¢,A).

This model is U(1) symmetric under the following operations:
1. ®—>®'=D

1
2. A, > A=A, +zaua where o = or(x,1).

D,'®'=(0,—ieA,")®'

=d, (eiaCIJ)— ie[Au +lau0¢)eiacb

e
=ei“D#(I)
=0,4,- 0,4,
P Loal-a P
=0, Av+; o |—a, A‘u+z #OC
:F,uv

- Lagrangian is U(1) symmetric.
3.2 Spontaneous Symmetry Breaking
QFT usually selects the lowest energy state to be the vacuum. For the Klein-Gordon

1
potential (V(gb) = Emzq)zj , ¢ =0 is the unique lowest energy state. But what

happens if there are two or more with the same value?

V(o)
NON-UNIQUE 4

/ W

V(o)
UNIQUE A




