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Consider the cases of ! = 0 , ! = i  separately, and we will substitute in !"#
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!
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The zeroth order equation will be 
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In order of terms: velocity perturbations; expansion of the universe; perturbed 
gradient. 
Take the divergence of this equation; 
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where the curl of grad is zero by definition, which decouples this equation. This part 
will die off very quickly with the scale factor; ! " v# 0  as a!" . This process is 
splitting up the non-rotational and rotational parts of the velocity respectively; the 
rotational part will die off very quickly. 
 
Take the fourier transform of these two equations. 
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Examples: 
1. CDM: w = 0 ; extra simplification is that one can choose ! = 0 , which means 

that the second of the two equations above also decouples, so that the CDM 

particles are the freely-falling observers of the FRW metric. Then, ! 'µ =
1

2
h ' , 

and all we need to know is the evolution of h  and we get !
m

. 

2. Radiation: w =
1

3
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If h '' = 0 , then the radiation exhibits simple harmonic oscillations (responsible 
for the oscillations in the CMBR power spectrum). 

For k  very small, k ! 0 , then !
r
'' =
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3
h '' =

4

3
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m
''  from the above equation  

!
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m
= A + B#  (a constant + a linear term) on large scales. 

This equation will be important later when we discuss the CMB. 
 
In order to get a closed set of equations, we need to know the evolution of h . We will 
now do this. 
 
5.3.2 Perturbed Einstein Equations 
We will only consider scalar fluctuations, i.e. density waves/fluctuations in the metric. 
We will reduce the number of free parameters in the 3x3 hij  from 6 to 2, by taking the 
trace. 
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where h = Tr hij{ } , i.e. the trace, and h
s
 is the anisotropic part of hij . 

NB: we could also discuss vorticity (vector perturbations, i.e. the curl equation above) 
and gravitational waves (tensor perturbations). 
We wish to compute the Einstein Equations at first order. 
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We have already computed T µ

!
. We will now work out the perturbed versions of the 

Friedman and Raychauduri equations. 
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where the last part is a sum over all the components in the universe. 
0i: 
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These encompass the Poisson equation in a slightly more complicated way than usual. 
 
Substitute 00 into ij  to get the dynamical equation for h ; 
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To solve the problem, we need to solve these three coupled equations. Equation (3) is 
exactly the same equation as with the Newtonian perturbations, with an extra term 
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where the last part is the approximation when !  is large. 
Solution is: 
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The first part is a growing term, the second a decaying term. 
 
From last time, the metric was ds2 = a2 !µ" + hµ"( ) , in which we are automatically in 
conformal time. We can switch back to normal time by the following. 
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This is the same result as in section 5.2 case 2. Note that we now have a much more 
general solution, which can deal with radiation, plus other things. 
 
5.4 Adiabatic Perturbations 
Recall that 
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We will assume that the initial perturbations are adiabatic, that is, 
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The equations of motion are compatible with this condition being imposed on super-
horizon scales. 
 
In fact, inflationary perturbations are adiabatic, and are also called curvature 
perturbations since h

s
! 0 . 

 
5.5 Power Spectrum and Transfer Functions 
We have shown that (denoting “the perturbation in CDM” by just “CDM”): 

1. CDM grows during the matter era 
2. CDM stops growing at ! -domination. 
3. No growth takes place during the radiation era – the Mezaros effect. 

 
Although it was not explicitly stated, the no-growth in the radiation era is only valid 
on sub-horizon scales. Here, we will discuss the growth of perturbations in the 
radiation era, before working out the transfer function T k( )  which relates 
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i( ) . The important issue is whether the perturbations are super-

horizon k! << 1( )  or sub-horizon k! >> 1( ) . 
 
The equation of motion that we are dealing with is 
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In general, this will need to be supplemented by one for !
r
, however we will make 

two suppositions which will mean that we don’t need to do this. 
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This last term will be small, and hence 
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The perturbations in m are sourced by those in r. 
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Again, the first part is the growing mode, the second the decaying mode. We always 
ignore the decaying mode. 
 
 super-horizon fluctuations grow in the radiation era, just as they do in the matter 
era. 
 
Sub-horizon 
We will discuss the radiation fluctuations in the section on the CMB. Suffice to say 

that on sub-horizon scales, !
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The linear part B k( )  associates itself with the growing solution, while the logarithmic 
part A k( )  associates itself with the decaying solution. 
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So, therefore, let us consider the evolution of two modes (A) and (B). 
(A): k < keq  
(B): k > keq  

where keq =
2!

"eq

, !eq = 16 "mh
2( )

#1

Mpc , see QS1. 

For either of the modes consider !
H
= horizon crossing time, and define !"  to be the 

point of !  domination. 

  
Therefore modes which come inside the horizon during the radiation era are 
suppressed relative to those which came inside during the matter era. 
 
Transfer Functions 
We need to work out how much each of these modes grows during each epoch. 
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where the first part is from the ! -era, the second from the subhorizon matter era, the 
third from the subhorizon radiation era, and the last from the super-horizon radiation 
era. 
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where the first part is the ! -era, and the second part the superhorizon and subhorizon 
growth. 
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The dashed part represents that which hasn’t been calculated here; it is a logical 
extrapolation. 
If P

i
k( )! k

ns  (where n
s
= 1  corresponds to scale invariant), then today, 

P k( )! k
ns  for k < keq  

P k( ) ! k
ns "4  for k > keq  

 
Measurements of P k( )  are made at k

COBE /WMAP
 using the CMB and at kg  using 

redshift surveys of galaxies, providing a diagnostic of this theory. 


