PC4772 — Early Universe — Lectures 15 & 16

4.4.4 Cosmic Strings
For non-interacting strings,

1
Pvzr = §(2<V2>_ l)pszr
where <v2> is the RMS velocity of the strings.
- p.m = _%(1 + <v2>)pm
So:
- If <v2>:O, then p,, «<a, w:—%.
- If<v2>:/,then p,<a,w=0
- If<v2>:1, then p, <a™, w= 13.

During the matter era, <v2> ~ é . Then p,, /p,,. isaconstant = self-similar scaling,

1.e. the strings expand at the same time as matter. However, if <v2> * 12, then the

string density grows relative to the background. This is the case in the radiation era, in
the absence of interactions.

Fortunately, there exists a natural mechanism for the network to lose the extra energy
in order to maintain scaling.

Reconnection

Loops

o )C

If you have a pair of strings crossing, then they will change partners. This is called

reconnection. If a string crosses itself, then it produces a loop. Loops are unstable, and
they decay away into radiation.

5. Structure Formation
5.1 Power Spectrum Measures
The density perturbation (or contrast) is defined by &(x,z) (which is not a delta

function).
o (x,t -D
5()_c,t)= p(_)—C ) _ p()_c’i) P(t)
p p(t)
where p = p(t) is the background density. In a flat universe,
o = 8nG _
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We expand &(x,¢) in terms of comoving Fourier modes in a large volume V .
\% .
S(x,t)=—=Y 6, (t)e ™"
(— ) (27_[)3 ; k( )

NB: in the infinite volume limit, V&, ()= &, (¢) the Fourier Transform,
Hence,

1 x 1 e
VI5(£’t)elkd3£:W;5k'Je(k k)d3)_C:;5k

The correlation function &(r) (= &(r) in an isotropic universe) is defined to be

E(r) = [4'26(x)(x+1)

Vi(2r)' ) i3
V ik"r | "
_W 5k5k k*5(k+k)
k'\k"
\%
— 6 '5 —ik'"r
(27_[)3; k"™ -k

2 . . .
, which we have shown is the Fourier Transform

and the power spectrum P(k)=|5,
of the correlation function.

We have already computed P, (k) from inflation. This section explains how to
compute P(k) at the present day using linear perturbation theory. This can be
quantified (in linear perturbation theory) by the Transfer Function T (k), which is
defined by

(1,).

2

> P(k)=|T (k) B (k)

5.2 Overview of Structure Formation
Matter content of the universe:
Definite:
- Baryons (& leptons), 1.e. protons, neutrons, electrons, positrons, etc.
Q,h* =0.02 (Big Band Nucleosynthesis considerations)
- Photons & Neutrinos — “Radiation”
Q h*=42x107 (from CMB temperature)

Hypothesized:
- Cold Dark Matter (CDM)
o Weakly interacting particles which only interact gravitationally with
normal matter, e.g. WIMPs (Weakly Interacting Massive Particles),
Axions.
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- Hot Dark Matter (HDM)
o Massive neutrinos
- Dark Energy: A, Quintessence, etc.

At present, we believe that Q_,,,,h> =0.1, Q,,,,,h° <<1, Q. =0.7.

Using linear perturbation theory in the Newtonian limit, one can deduce that

2a . K’

a5M = 6M |:47'L'GPM - % 5 }
a

The derivatives are with respect to time; J,, is the density contrast in the matter and

O, +—
a

dpP

c¢,” = — 1s the sound speed in the fluid.
dp

For CDM, P =0 and hence ¢,” =0. For HDM and baryons, there exists pressure due

to collisions, therefore ¢,> # 0. For radiation, ¢,* = 13 :

1.a=0,a=1

Sy =0, [4nGp,, — 7k ]
N 6M o e,/4nGpM—cfk21

J4rnG
For k>7r—l)M

c

s

J4rnG
For k<7r—l)M

c

s

—> oscillatory solutions

- Exponential growth

(NB: we will ignore decaying solutions)
—> there exists a length scale, known as the Jean’s Length,

1
Py w2
27k, Gp,,

where:
A>A,, density fluctuations grow exponentially (natural propensity of

fluctuations
A < A,, density fluctuations oscillate due to pressure support.

e.g. ¢, =0 2> A, =0 and density fluctuations grow on all scales.

1

61Gt*
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2.¢2=0,a0t” > p, =

5, =0

Solution is &,, o t"
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Z

. . . 2 1 .
There is one growing solution, where §,, o< ¢/ o< @ < o and one decaying
+2

. 1
solution, where §,, o< —.
t

Decaying solutions are singular at =0, so we ignore them because we have
assumed 9,, is small.

A
3. A domination: a o< e\C
Py — 0 and a — o very quickly.

5, +2\/§8M =0

—> constant solution, hence exponential expansion suppresses the growth of
perturbations.

4. Mezaros Effect (652 = 0)

p = pr + pM
1
P=—
3Pr
k =0 (flat universe)
8nG i ArnG
The first two give H’ = ﬂT(pr +Pu ), 4. —ET(zp, +p,)-
a
Define y:&=i .
pr aeq
p? = 37GP. (1+lj
3 y
4
d:_ﬁ 1+%
3 y
Change variables from ¢ to y.
2
0 ad 90 dod [al o
t aeq y t aeq y aeq y
0’ 2+3y 9 3
——0, + Y —0, =———9,,
dy y(1+y)ay ™ 2y(1+y)
2
This is the Mezaros Equation. There exists a solution with —6,, =0.
0 3 2 0’
- —0,, =——09,, > 0,, <—+y (which satisfies —-6,, =0

- Density fluctuations are constant during the radiation era (y <<1) and then
they grow like y(e< @) in the matter era, as found in section 2.
= density fluctuations in CDM start to grow at 7, .
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5.3 Relativistic Perturbation Theory
We will perturb a flat FRW universe with a (background) metric g,, =a’(n)n,, (NB:

time is conformal) with line element
ds’=a’ (n)[nﬂv +h, ]dx“dxv

and we will assume that , that is, linear perturbations.

In relativistic perturbation theory, one can make a choice of gauge which fixes the
coordinates: we will use the Synchronous Gauge with
By, = hy; =0
which corresponds to perturbations seen by a comoving freely-falling observer.
8w = 8 T 08y, = a’ (nuv + h#V)
guv — g,uv +6g,uv — a2 (n,uv - h/,tv)
One can compute the Christoffel symbols,

!

Fgoza_
a
ng:rgozo
0o a' 1., a
Fij :;611 —Ehij _Zhl/
i a' I 1 i
FOj:;6ij_Ehj
i 1 i i i
rjk=—5(akhj+ajhk—ahjk)

5.3.1 Perturbed Fluid Equations
Consider a perfect fluid with energy-momentum tensor

Th= (f) + Is)u"uv ~ P&,
when perturbed, this becomes
T, =T"+8T*,
=(p+P)u"u, - P8",+(3p+8P)u*u, +(p + P)(6u"u, +u"du,)— PS",

where u*6u, =0, i.e. the perturbation is perpendicular to the fluid flow.



