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4.4.4 Cosmic Strings 
For non-interacting strings, 

P
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where v2  is the RMS velocity of the strings. 
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So: 
- If v2 = 0 , then !

str
" a

#2 , w = ! 1
3

. 

- If v2 = 1
2

, then !
str
" a

#3 , w = 0  

- If v2 = 1, then !
str
" a

#4 , w = 1
3
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During the matter era, v2 ! 1

2
. Then !

str
/ !

crit
 is a constant  self-similar scaling, 

i.e. the strings expand at the same time as matter. However, if v
2

! 1
2

, then the 
string density grows relative to the background. This is the case in the radiation era, in 
the absence of interactions. 
 
Fortunately, there exists a natural mechanism for the network to lose the extra energy 
in order to maintain scaling. 

 
If you have a pair of strings crossing, then they will change partners. This is called 
reconnection. If a string crosses itself, then it produces a loop. Loops are unstable, and 
they decay away into radiation. 
 
5. Structure Formation 
5.1 Power Spectrum Measures 
The density perturbation (or contrast) is defined by ! x,t( )  (which is not a delta 
function). 

! x,t( ) =
!" x,t( )
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where ! = ! t( )  is the background density. In a flat universe, 
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We expand ! x,t( )  in terms of comoving Fourier modes in a large volume V . 
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NB: in the infinite volume limit, V!
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The correlation function ! r( )  (= ! r( )  in an isotropic universe) is defined to be 
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and the power spectrum P k( ) = !
k

2 , which we have shown is the Fourier Transform 
of the correlation function. 
 
We have already computed P

i
k( )  from inflation. This section explains how to 

compute P k( )  at the present day using linear perturbation theory. This can be 
quantified (in linear perturbation theory) by the Transfer Function T k( ) , which is 
defined by 

!
k
t
0( ) = T k( )!

k
t
i( ) . 

! P k( ) = T k( )
2

P
i
k( )  

 
5.2 Overview of Structure Formation 
Matter content of the universe: 
Definite: 

- Baryons (& leptons), i.e. protons, neutrons, electrons, positrons, etc. 
!

b
h
2
" 0.02  (Big Band Nucleosynthesis considerations) 

- Photons & Neutrinos – “Radiation” 
!

r
h
2
" 4.2 #10

$5  (from CMB temperature) 
 
Hypothesized: 

- Cold Dark Matter (CDM) 
o Weakly interacting particles which only interact gravitationally with 

normal matter, e.g. WIMPs (Weakly Interacting Massive Particles), 
Axions. 
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- Hot Dark Matter (HDM) 
o Massive neutrinos 

- Dark Energy: ! , Quintessence, etc. 
 
At present, we believe that !

CDM
h
2
" 0.1 , !

HDM
h
2
<< 1 , !

DE
" 0.7 . 

 
Using linear perturbation theory in the Newtonian limit, one can deduce that 
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The derivatives are with respect to time; !
M

 is the density contrast in the matter and 

c
s

2
=
dP

d!
 is the sound speed in the fluid. 

 
For CDM, P = 0  and hence c

s

2
= 0 . For HDM and baryons, there exists pressure due 

to collisions, therefore c
s

2
! 0 . For radiation, c

s

2
= 1

3
. 

 
1.  !a = 0 , a = 1  
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For k >
4!G"

M

c
s

  oscillatory solutions 

For k <
4!G"

M

c
s

  Exponential growth 

(NB: we will ignore decaying solutions) 
 there exists a length scale, known as the Jean’s Length, 
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where: 
! > !

J
, density fluctuations grow exponentially (natural propensity of 

fluctuations 
! < !

J
, density fluctuations oscillate due to pressure support. 

e.g. c
s
= 0   !

J
= 0  and density fluctuations grow on all scales. 
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There is one growing solution, where !
M
" t

2
3 " a "

1

1+ z
, and one decaying 

solution, where !
M
"
1

t
. 

Decaying solutions are singular at t = 0 , so we ignore them because we have 
assumed !

M
 is small. 
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" 0  and a!"  very quickly. 
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 constant solution, hence exponential expansion suppresses the growth of 
perturbations. 

 
4. Mezaros Effect c
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Change variables from t  to y . 
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This is the Mezaros Equation. There exists a solution with 
!
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 Density fluctuations are constant during the radiation era y << 1( )  and then 
they grow like y ! a( )  in the matter era, as found in section 2. 
 density fluctuations in CDM start to grow at teq . 
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5.3 Relativistic Perturbation Theory 
We will perturb a flat FRW universe with a (background) metric gµ! = a

2
n( )"µ!  (NB: 

time is conformal) with line element 
ds

2 = a2 n( ) !µ" + hµ"#$ %&dx
µ
dx

"  
and we will assume that , that is, linear perturbations. 
 
In relativistic perturbation theory, one can make a choice of gauge which fixes the 
coordinates: we will use the Synchronous Gauge with 

h
00
= h

0i
= 0  

which corresponds to perturbations seen by a comoving freely-falling observer. 
gµ! = gµ! + "gµ! = a

2 #µ! + hµ!( )  

g
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One can compute the Christoffel symbols, 
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5.3.1 Perturbed Fluid Equations 
Consider a perfect fluid with energy-momentum tensor 

T
µ

! = " + P( )uµ
u! # P$

µ

!  
when perturbed, this becomes 

T
µ
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µ
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where uµ
!uµ = 0 , i.e. the perturbation is perpendicular to the fluid flow. 


