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The stability of the wall is due to the potential and the gradient balancing each other
(Derrick’s Theorem). Simple argument:
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Derrick’s Theorem says that for stability, E,, = E,,,
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where m, is the mass of the ¢ particle. This is the same (ignoring numerical

coefficients) as the equation found above.

One can compute the EM tensor (with units kgm™);
4

o = sech“(ﬁ)diag(l,o,l,l)
2 A

2
[NB: P= 3 p.] The surface density (with units kgm ™) is
242
o= dex = T\//’Uf ~ pA

NB:
1. A isvery small and o is very large if n=10"°GeV .

2. There exists a topologically conserved charge J° and current J, known as the
kink number.
J"=€e""d.¢
where "' =—¢g".
d,J"=¢€"9d,0,0=0
because &"" is antisymmetric, and the derivative is symmetric, and last

semester we showed that this combination must equal 0.
aJ°
—->—-V-j=0
ot

Define N:—J.de0 , then a—N: 0
2n ot

J-d d(f) ¢x +°°) d’( :_°°)

2n
(There could exist solutlons with an increased number of kinks)

J'=0.¢ S N=o
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4.3.3 Nielson-Oleson Vortex
- 1 . ALe 2
L=D,®D"®~ F, " - Z(|<p| -1’)

-1
Examples 2, Question 1: there are 2 particles, one scalar m, ' 2(\/In) and one

vector m,” = (\/Een)il (The Higgs particle).

h .
NB: m,~' = — is the De Broglie wavelength of the particle.

m,c

EOM:

D*D,® + %c1>(|¢|2 -n°)=0

9,F*" =J"=2eIm{®D'®}

[ D =0, —ieA, ] The latter one is the equivalent of the Maxwell laws.
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Cylindrical Symmetrical Solution

®=ne"f(r)
A =_nolr)
er

where n = winding number = topological charge.
Boundary conditions: f(0)=a(0)=0 and f(r)— La(r)—1 as
r—> oo,

______________ There are two flux tubes, scalar and vector,
with widths 8 ~m~' and &,~m, ",
corresponding to the Compton wavelength
of the particles.
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Left: B<1: Type 1 regime,
ms_1 >m A_l.
Right: > 1: Type 2 regime,

| Scalar | |
m. <m,
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NB:
1. Type 1 and Type 2 are almost analogous to the type 1 and 2 regimes of
superconductors. This is no coincidence since the Landau-Ginsburg theory of
superconductors is the non-relativistic limit of the Abelian-Higgs model.

2. Typically the core radius of the strings is very small, § ~7n~', whereas the
mass per unit length ¢ ~n* is very large.
a. From large distances, we can treat the string as line distribution of
mass.
b. The gravitational properties are governed by the parameter Gu ~10~°

for 1~10"°GeV . This can lead to density fluctuations, gravitational

lensing and many other interesting effects.
3. The magnetic flux associated with the vortexes 1s quantized.
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4.3.4 Monopoles
Consider ¢ = ((])1,(])2,(;)3) .

L=30,690- A0 -]

Break global SO(3) — SO(2). Vacuum manifold is
M={p:|g] =n*}=s".
T, (Sz) =7 -> monopoles

Aside: unfortunately, by Derrick’s Theorem global monopoles are unstable in 3D, but
actually the gauge equivalent is stable and is known as the “t’Hooft-Polyakov”
monopole.

The global monopole solution is known as the “Hedgehog” solution.

¢(r)=nh(r)?

S

The arrows point in all directions, creating a “hedgehog”-like appearance.
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where § ~n".

The gauge equivalent has a magnetic monopole associated with it:

2r
®,=[V-Bdv=[B-ds=="
e
17 ) ) g
as B= ——2, where e =electromagnetic coupling constant, and n =the winding
er
number. It also a mass
4m
m=""1
e

NB: Maxwell’s theory says V- B =0, i.e. no magnetic monopoles.

4.4 Simple Models for defect evolution

4.4.1 Monopoles

Monopoles evolve like point particles if one assumes that monopole-antimonopole
annihilation is very inefficient.

9 pmonopole o< a73
where a is the scale factor. If G — SU(3)x SU(2)xU(1), then monopoles form at
t=t,. Now assume that the correlation length ~¢,, and that time (i.e. one

monopole per horizon volume).
P (t )_ M M

monopoles \* f | — g3~ 3

&t

3
a 3
— f _/
pmonopoles (t) - pmonopoles (tf )[;j o< 2
% -2 1 . .
for ae<t’?>. Now p_. o<t during both radiation and matter eras.
—4
a rad
p oc H2 o< 3 o< t72
a matter

Hence the density of monopoles increases relative to radiation. If
Prnonopoles (tf) >> (t f) ,then p,,...00, Will come to dominate the universe.
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NB: we have observed no magnetic monopoles in the universe.

—> there exists a bound on 717 known as the Parker bound (see example sheet).

This is called the monopole problem, and it was the original motivation for inflation.
If a o< e™ then p,,,,... (1) — 0 very quickly. If the reheat temperature 7,,,,,, <7 then

reheat

the phase transition does not happen again after inflation.

4.4.2 Dimensional scaling vs. Self-Similar scaling

The evolution of strings and domain walls is more complicated. Let us first assume
that the defects are static (i.e. not interacting).

If Lca, A<a® and V o< a’, then

_oA 1
pdomainwalls V a
2 P
—Sw=—-=|w=—
3( p)
CuL 1
pstring_7x?
9w=—l
3

This is called “dimensional scaling”.

However, this ignores the possibility of:

1. Interactions

2. Work against the expansion due to v # 0
It is possible that the defect network evolves towards a self-similar scaling regime,
where Loct.

-2 -1
9 pstring o< f b pdomain walls o< f

4.4.3 Domain Walls
Ifp,, . . ea ' oret ', then this grows relative to the background = domain wall

problem, and a bound on 7 or a necessity for inflation.



