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The stability of the wall is due to the potential and the gradient balancing each other 
(Derrick’s Theorem). Simple argument: 
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Derrick’s Theorem says that for stability, Epot = Egrad  
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where m!  is the mass of the !  particle. This is the same (ignoring numerical 
coefficients) as the equation found above. 
 
One can compute the EM tensor (with units kgm!3 ); 
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NB: 

1. !  is very small and !  is very large if ! " 10
16
GeV . 

2. There exists a topologically conserved charge J 0  and current j , known as the 
kink number. 
J
µ
= ! µ"#"$  

where ! µ"
= #!

"µ . 
!µJ

µ
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because ! µ"  is antisymmetric, and the derivative is symmetric, and last 
semester we showed that this combination must equal 0. 
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(There could exist solutions with an increased number of kinks) 
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4.3.3 Nielson-Oleson Vortex 
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Examples 2, Question 1: there are 2 particles, one scalar m!
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 and one 

vector m
A
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 (The Higgs particle). 
 

NB: 
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 is the De Broglie wavelength of the particle. 

 
EOM: 
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[Dµ
= !µ " ieAµ ] The latter one is the equivalent of the Maxwell laws. 

 
Cylindrical Symmetrical Solution 
 

! = "ei# f r( )  

A! = "
#$ r( )

er
 

where n  !  winding number ! topological charge. 
Boundary conditions: f 0( ) = ! 0( ) = 0  and f r( )! 1," r( )! 1 as 
r!" . 

 
 
There are two flux tubes, scalar and vector, 
with widths !

s
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corresponding to the Compton wavelength 
of the particles. 
 

Define ! =
m

A

"1

m
S

"1

2

=
#

2e
2

. 

 
 

 
Left: ! < 1 : Type 1 regime, 
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Right: ! > 1 : Type 2 regime, 
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NB: 
1. Type 1 and Type 2 are almost analogous to the type 1 and 2 regimes of 

superconductors. This is no coincidence since the Landau-Ginsburg theory of 
superconductors is the non-relativistic limit of the Abelian-Higgs model. 

2. Typically the core radius of the strings is very small, ! ~ "#1 , whereas the 
mass per unit length µ ~ !2  is very large. 

a. From large distances, we can treat the string as  line distribution of 
mass. 

b. The gravitational properties are governed by the parameter Gµ ~ 10!6  
for ! ~ 1016GeV . This can lead to density fluctuations, gravitational 
lensing and many other interesting effects. 

3. The magnetic flux associated with the vortexes is quantized. 
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4.3.4 Monopoles 
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Break global SO 3( )! SO 2( ) . Vacuum manifold is 

M = ! : !
2

= "2{ } # S2 . 

 
!
2
S
2( ) = !   monopoles 

Aside: unfortunately, by Derrick’s Theorem global monopoles are unstable in 3D, but 
actually the gauge equivalent is stable and is known as the “t’Hooft-Polyakov” 
monopole. 
 
The global monopole solution is known as the “Hedgehog” solution. 

! r( ) = "h r( ) r̂  

 
The arrows point in all directions, creating a “hedgehog”-like appearance. 
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where ! ~ "#1 . 
 
The gauge equivalent has a magnetic monopole associated with it: 
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r
, where e ! electromagnetic coupling constant, and n ! the winding 

number. It also a mass 
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e
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NB: Maxwell’s theory says ! " B = 0 , i.e. no magnetic monopoles. 
 
4.4 Simple Models for defect evolution 
4.4.1 Monopoles 
Monopoles evolve like point particles if one assumes that monopole-antimonopole 
annihilation is very inefficient. 
 !monopole " a

#3  
where a  is the scale factor. If G! SU 3( ) " SU 2( ) "U 1( ) , then monopoles form at 
t = t f . Now assume that the correlation length ! ~ t f , and that time (i.e. one 
monopole per horizon volume). 
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Hence the density of monopoles increases relative to radiation. If 
!monopoles t f( ) >> !matter t f( ) , then !monopoles  will come to dominate the universe. 
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NB: we have observed no magnetic monopoles in the universe. 
 there exists a bound on !  known as the Parker bound (see example sheet). 
This is called the monopole problem, and it was the original motivation for inflation. 
If a ! e

Ht  then !monopole t( )" 0  very quickly. If the reheat temperature T
reheat

<!  then 
the phase transition does not happen again after inflation. 
 
4.4.2 Dimensional scaling vs. Self-Similar scaling 
The evolution of strings and domain walls is more complicated. Let us first assume 
that the defects are static (i.e. not interacting). 
If L ! a , A ! a
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This is called “dimensional scaling”. 
 
However, this ignores the possibility of: 

1. Interactions 
2. Work against the expansion due to v ! 0  

It is possible that the defect network evolves towards a self-similar scaling regime, 
where L ! t . 

 !string " t
#2 , !

domain walls
" t

#1  
 
4.4.3 Domain Walls 
If !

domain walls
" a

#1  or ! t
"1 , then this grows relative to the background  domain wall 

problem, and a bound on !  or a necessity for inflation. 


