PC4771 - Gravitation - Lectures 9 \& 10

3.3 Metric Connection \& Metric Geodesign

Recall: Fermatt's principle - light rays extremise the integral $S=\int_{a}^{b} d t$.
Convert to relativity - extremise $S=\int_{a}^{b} d s$.
$\rightarrow S=\int_{a}^{b}\left(g_{\alpha \beta} \frac{d x^{\alpha}}{d t} \frac{d x^{\beta}}{d t}\right)^{1 / 2} d \tau$ is extremised, where we use $d \tau=\left|d s^{2}\right|^{1 / 2}$ is the proper time.
\rightarrow compute the Euler-Lagrange (E-L) equations with
$L=\left|g_{\alpha \beta} \frac{d x^{\alpha}}{d t} \frac{d x^{\beta}}{d t}\right|=L\left(\tau, x^{\mu}, \frac{d x^{\mu}}{d \tau}\right)$.
For the whole calculation, see the earlier handout.
$\frac{d L}{d x^{\mu}}=\frac{\partial_{\mu} g_{\alpha \beta} \frac{d x^{\alpha}}{d \tau} \frac{d x^{\beta}}{d \tau}}{L}$
$\frac{d L}{d\left(\frac{\partial x^{\mu}}{\partial \tau}\right)}=\frac{g_{\alpha \beta} \delta^{\alpha}{ }_{\mu} \frac{d x^{\beta}}{d \tau}+g_{\alpha \beta} \frac{d x^{\alpha}}{d \tau} \delta^{\beta}{ }_{\mu}}{L}$

NB: $\frac{\partial L}{\partial \tau}=0 \rightarrow L-\frac{d x^{\mu}}{d \tau} \frac{\partial L}{\partial\left(\frac{\partial x^{\mu}}{\partial \tau}\right)}=$ const. $\rightarrow L-2 L=$ const $\rightarrow L=$ const.
E-L:
$\partial_{\mu}\left(\frac{\partial L}{\partial\left(\frac{\partial x^{\mu}}{d \tau}\right)}\right)-\frac{\partial L}{\partial x^{\mu}}=0$
$\rightarrow \frac{d^{2} x^{\mu}}{d \tau^{2}}+\left\{\begin{array}{l}v \\ \alpha \beta\end{array}\right\} \frac{d x^{\alpha}}{d \tau} \frac{d x^{\beta}}{d \tau}=0$
where $\left\{\begin{array}{c}v \\ { }_{\alpha \beta}\end{array}\right\}=\frac{1}{2} g^{\mu \nu}\left(-\partial_{\mu} g_{\alpha \beta}+\partial_{\alpha} g_{\alpha \beta}+\partial_{\beta} g_{\alpha \mu}\right)$
This would look like the affine geodesic equation if $\Gamma_{\alpha \beta}^{v}=\left\{\begin{array}{c}v \\ \alpha \beta\end{array}\right\}$.
$\left\{\begin{array}{c}v \\ \alpha \beta\end{array}\right\}$ is known as the Christoffel connection or the Metric Connection.

Now consider an affine connection with $\nabla_{\alpha} g_{\mu \nu}=0$. Then (see sheet):

$$
\Gamma_{\nu \mu}^{\rho}+\Gamma_{\mu \nu}^{\rho}=g^{\alpha \rho}\left(-\partial_{\alpha} g_{\mu \nu}+\partial_{\nu} g_{\alpha \mu}+\partial_{\mu} g_{v \alpha}\right)+2\left(T_{v}{ }^{\rho}{ }_{\mu}+T_{\mu}{ }^{\rho}{ }_{v}\right)
$$

If the connection is torsion free, i.e. $T^{\mu}{ }_{a \beta}=0$, then

$$
\Gamma_{\mu \nu}^{\rho}=\frac{1}{2} g^{\alpha \rho}\left(-\partial_{\alpha} g_{\mu \nu}+\partial_{v} g_{\alpha \mu}+\partial_{\mu} g_{v \alpha}\right)=\left\{\begin{array}{c}
\rho \\
\mu v
\end{array}\right\}
$$

If the metric is covariently conserved $\nabla_{\alpha} g_{\mu \nu}=0$, and $T^{\mu}{ }_{\alpha \beta}=0$ then the affine connection is the Christoffel connection and the connection of parallel transport can be defined in terms of the metric.

Notes:

1. $T^{v} \nabla_{\mu}[d(T, A)]=0$ (see section 3.2) \rightarrow parallel transport of A^{μ} involves the angle between it and the tangent vector remaining constant.
2. $d s^{2}=d \tau^{2}[d(T, T)]$ where $T^{\mu}=\frac{d x^{\mu}}{d u} \rightarrow$ the interval can be classified as spacelike, timelike or null since the interval $d s^{2}$ is conserved.

From now onwards we will use the Christoffel connection as the definition of the connection.

3.4 Locally inertial coordinates

Let P be some point in the manifold. Without loss of generality, the coordinates of P can be chosen such that $x^{\mu}=0$, i.e. it is at the origin.

Consider the coordinate transformation.
$x^{\prime \rho}=x^{\rho}+\frac{1}{2} Q_{\mu \nu}^{\rho} x^{\mu} x^{\nu}$ for some array of numbers $Q_{\mu \nu}^{\rho}$.
$\rightarrow J_{\gamma}^{\prime \rho}=\frac{\partial x^{\prime \rho}}{\partial x^{\gamma}}=\delta^{\rho}{ }_{\gamma}+\frac{1}{2} Q_{\mu \nu}^{\rho}\left[\delta^{\mu}{ }_{\gamma} x^{\nu}+x^{\mu} \delta^{\nu}{ }_{\gamma}\right]$
$\partial_{\alpha} J^{\prime \rho}{ }_{\gamma}=\frac{1}{2}\left[Q_{\gamma \alpha}^{\rho}+Q_{\alpha \gamma}^{\rho}\right]$
Under a coordinate transformation, $\Gamma_{\mu \nu}^{\prime \rho}=J_{\gamma}^{\prime \rho} J_{\mu}^{\alpha} J_{\nu}^{\beta} \Gamma_{\alpha \beta}^{\gamma}+J_{\gamma}^{\prime \rho} J_{\mu}^{\alpha} \partial_{\alpha} J_{v}^{\gamma}$
Now;
$J_{\gamma}^{\prime \prime} J_{v}^{\gamma}=\delta^{\rho}{ }_{v}$
$J_{v}^{\gamma} \partial_{\alpha} J_{\gamma}^{\prime \rho}+J_{\gamma}^{\prime \rho} \partial_{\alpha} J_{v}^{\gamma}=0$
$\rightarrow \begin{aligned} \Gamma_{\mu \nu}^{\prime \rho} & =J_{\gamma}^{\prime \rho} J_{\mu}^{\alpha} J_{V}^{\beta} \Gamma_{\alpha \beta}^{\gamma}-J_{\mu}^{\alpha} J_{V}^{\gamma} \partial_{\alpha} J_{\gamma}^{\prime \rho} \\ & =J_{\gamma}^{\prime \rho} J_{\mu}^{\alpha} J_{\gamma}^{\beta} \Gamma^{\gamma}{ }_{\alpha \beta}-J_{\mu}^{\alpha} J_{V}^{\gamma} Q_{\gamma}^{\rho}\end{aligned}$
At $P, x^{\mu}=0 \rightarrow J_{v}^{\gamma}=J_{\gamma}^{\prime \nu}=\delta_{v}^{\gamma}$, and hence:
$\Gamma_{\mu \nu}^{\prime \rho}=\Gamma_{\mu \bar{\sigma}}^{\rho}-Q_{\mu \nu}^{\rho}$
If we choose $Q_{\alpha \beta}^{\rho}=\left.\Gamma_{\alpha \beta}^{\rho}\right|_{P}$, then $\left.\Gamma_{\mu \nu}^{\prime \rho}\right|_{P}=0 \rightarrow$ the connection in the primed coordinate system is zero at P.
\rightarrow we can always choose coordinates to be inertial at a point P in the manifold, and at that point $\Gamma_{\alpha \beta}^{\mu}=0$ and $\partial_{\mu}=\nabla_{\mu}$ - only at that point, not globally.

3.5 Isometrics and Killing's Equation

Consider a coordinate transformation $x^{\prime \mu}=x^{\mu}+\varepsilon \xi^{\mu}$, where ε is small.

$$
\begin{aligned}
d x^{\prime \mu}= & J_{\alpha}^{\prime \mu} d x^{\alpha}=\left(\delta_{\alpha}^{\mu}+\varepsilon d_{\alpha} \xi^{\mu}\right) d x^{\alpha} \\
d s^{2}\left(x^{\prime}\right) & =g_{\mu \nu}\left(x^{\prime}\right) d x^{\prime \mu} d x^{\nu \nu} \\
& =g_{\mu \nu}(x+\varepsilon \xi)\left(\delta^{\mu}{ }_{\alpha}+\varepsilon \partial_{\alpha} \xi^{\mu}\right)\left(\delta_{\beta}^{v}+\varepsilon \partial_{\beta} \xi^{v}\right) d x^{\alpha} d x^{\beta} \\
& =\left(g_{\mu \nu}+\varepsilon \xi^{\rho} \partial_{\rho} g_{\mu \nu}+O\left(\varepsilon^{2}\right)\right)\left(\delta_{\alpha}^{\mu}+\varepsilon \partial_{\alpha} \xi^{\mu}\right)\left(\delta^{v}{ }_{\beta}+\varepsilon \partial_{\beta} \xi^{v}\right) d x^{\alpha} d x^{\beta} \\
& \approx d s^{2}(x)+\varepsilon\left[\xi^{\rho} \partial_{\rho} g_{\mu v} \delta_{\beta}^{\nu} \delta_{\alpha}^{\mu}+g_{\mu v} \delta_{\beta}^{v} \partial_{\alpha} \xi^{\mu}+g_{\mu \nu} \delta_{\alpha}^{\mu} \partial_{\beta} \xi^{\nu}\right] d x^{\alpha} d x^{\beta}+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

Therefore:
$d s^{2}(x 1)=d s^{2}(x)+O\left(\varepsilon^{2}\right)$ if $\xi^{\rho} \partial_{\rho} g_{\alpha \beta}+g_{\mu \beta} \partial_{\alpha} \xi^{\mu}+g_{\alpha \nu} \partial_{\beta} \xi^{\nu}=0$.which is the equation for ξ^{μ} to be an isometry.

Now choose a point P and use locally inertial coordinates at that point, i.e. $\partial=\nabla$.
$\xi^{\rho} \nabla_{\rho} g_{\alpha \beta}+g_{\mu \beta} \nabla_{\alpha} \xi^{\mu}+g_{\mu \nu} \nabla_{\beta} \xi^{v}=0$ at P.
$\rightarrow \nabla_{\alpha} \xi_{\beta}+\nabla_{\beta} \xi_{\alpha}=0$ if $\nabla_{\alpha} g_{\mu \nu}=0$.
This is known as Killing's Equation.
NB:

1. $\nabla_{\alpha} \xi_{\beta}+\nabla_{\beta} \xi_{\alpha}=0$ is a tensorial equation - it is true in all frames.
2. Moreover the choice of P was arbitrary, so we could go through and do this at every point in the manifold.
$\rightarrow \nabla_{\alpha} \xi_{\beta}+\nabla_{\beta} \xi_{\alpha}=0$ is an identity in the isometry.

If ξ_{μ} is an isometry, then for T^{μ} a tangent vector:
$T^{v} \nabla_{v}\left(T^{\mu} \xi_{\mu}\right)=\xi_{\mu} T^{v} \nabla_{v} T^{\mu}+T^{\mu} T^{v} \nabla_{v} \xi_{\mu}$
If the curve is an affinely parameterized geodesic then $T^{v} \nabla_{v} T^{\mu}=0$.
$\rightarrow T^{\nu} \nabla_{v}\left(T^{\mu} \xi_{\mu}\right)=0$.
$\rightarrow T^{\mu} \xi_{\mu}$ is constant along affinely parameterised geodesics.

3.6 Computing Christoffel Symbols \& Geodesics

See handout.

