PC4771 - Gravitation - Lectures 7 \& 8

3. Connection \& Tensor Calculus

3.1 Covarient Differentiation \& Torsion

Notation:
$\partial_{\mu}=\frac{\partial}{\partial x^{\mu}} ; \partial_{\mu}{ }_{\mu}=\frac{\partial}{\partial x^{\prime \mu}}$
$\partial^{\mu}=\frac{\partial}{\partial x_{\mu}} ; \partial^{\prime \mu}=\frac{\partial}{\partial x_{\mu}^{\prime}}$
This will denote ordinary partial differentiation.
If ϕ is a scalar, then:

$$
\begin{aligned}
\partial_{\mu}^{\prime} \phi^{\prime} & =\frac{\partial \phi}{\partial x^{\prime \mu}}=\frac{\partial x^{\alpha}}{\partial x^{\prime \mu}} \frac{\partial \phi}{\partial x^{\alpha}} \\
& =J_{\mu}{ }^{\alpha} \partial_{\alpha} \phi
\end{aligned}
$$

This implies that $\partial_{\mu} \phi$ is a covector, and similarly $\partial^{\mu} \phi$ is a vector.

Now compute the partial derivative of a covector

$$
\begin{aligned}
\partial_{\mu}^{\prime} A_{v}^{\prime} & =J_{\mu}^{\alpha} \partial_{\alpha}\left[J_{v}^{\beta} A_{\beta}\right] \\
& =J_{\mu}^{\alpha} J_{v}^{\beta} \partial_{\alpha} A_{\beta}+\left(J_{\mu}^{\alpha} \partial_{\alpha} J_{v}^{\beta}\right) A_{\beta} \\
\partial_{\mu}^{\prime}{ }_{\mu} A^{\prime v} & =J_{\mu}^{\alpha} \partial_{\alpha}\left[J_{\beta}^{\prime v} A^{\beta}\right] \\
& =J_{\mu}^{\alpha} J_{\beta}^{\prime v} \partial_{\alpha} A^{\beta}+\left(J_{\mu}^{\alpha} \partial_{\alpha} J_{\beta}^{\prime v}\right) A^{\beta}
\end{aligned}
$$

In each case the first term is what one would expect of $\partial_{\mu} A_{v}$ and $\partial_{\mu} A^{v}$ were tensors of type $\binom{0}{2}$ and $\binom{1}{1}$ respectively.
$J_{\mu}^{\alpha} \partial_{\alpha} J_{v}^{\beta}=\frac{\partial x^{\alpha}}{\partial x^{\prime \mu}} \frac{\partial}{\partial x^{\alpha}}\left(\frac{\partial x^{\beta}}{\partial x^{\prime v}}\right)=\frac{\partial^{2} x^{\beta}}{\partial x^{\prime \mu} \partial x^{\prime v}} \neq 0$
$\rightarrow \partial_{\mu} A_{v}$ and $\partial_{\mu} A^{v}$ are not tensors!

Consider two points P and Q with coordinates x^{μ} and $x^{\mu}+\delta x^{\mu}$ respectively, and a vector $A^{v}(x)$ defined along the curve joining them.
From Taylor's Theorem:

$$
\begin{aligned}
A^{v}(x+\delta x) & =A^{v}(x)+\delta x^{\beta} \partial_{\beta} A^{v}(x)+O(2) \\
& =A^{v}(x)+\delta A^{v}(x)+O(2)
\end{aligned}
$$

Ignore $O(2) \rightarrow \delta A^{v}=\delta x^{\beta} \partial_{\beta} A^{v}=A^{v}(x+\delta x)-A^{v}(x)$, which is the difference between tensors defined at two distinct points on the manifold.

Under a coordinate transformation:

$$
\begin{aligned}
& A^{\prime v}(x+\delta x)=J_{\alpha}^{\prime v}(x+\delta x) A^{\alpha}(x+\delta x) \\
& A^{\prime v}(x)=J_{\alpha}^{\prime v}(x) A^{v}(x)
\end{aligned}
$$

\rightarrow clearly $A^{v}(x+\delta x)-A^{v}(x)$ is not a vector defined at P .
In order to define a tensorial derivative we must compare vectors at the same point in the manifold. Hence we introduce the concept of parallel transport via $\overline{\delta A}^{\mu}$.

The vector A^{v} evaluated at Q is $A^{v}+\delta A^{v}$ parallelly transported to Q is $A^{v}+\overline{\delta A}^{v}$, where $\overline{\delta A}^{v}=-\Gamma^{v}{ }_{\alpha \beta} A^{\beta} \delta x^{\alpha}$, and $\Gamma^{v}{ }_{\kappa \beta}$ is known as the connection. It parameterizes the effects of parallel transport.
Now we define the covariant derivative to be:

$$
\begin{aligned}
\nabla_{\mu} A^{v}(x) & =\lim _{\delta x^{\mu} \rightarrow 0}\left\{\frac{A^{v}(x+\delta x)-\left[A^{v}(x)+\overline{\delta A}(x)\right]}{\delta x^{\mu}}\right\} \\
& =\frac{\delta x^{\beta} \partial_{\beta} A^{v}+\Gamma_{\alpha \beta}^{v} A^{\beta} \delta x^{\alpha}}{\delta x^{\mu}} \\
& =\partial_{\mu} A^{v}+\Gamma_{\mu \beta}^{v} A^{\beta}
\end{aligned}
$$

We demand that:

1. $\nabla_{\mu} A^{v}$ is a tensor of type $\binom{1}{1}$
2. Linearity: $\nabla_{\mu}\left(\alpha A^{v} \rightarrow \beta B^{v}\right)=\alpha \nabla_{\mu} A^{v}+\beta \nabla_{\mu} B^{v}$
3. Liebnitz rule holds:

$$
\begin{aligned}
& \nabla_{\mu}\left(A^{v} B^{\gamma}\right)=B^{\gamma}\left(\nabla_{\mu} A^{v}\right)+A^{v}\left(\nabla_{\mu} B^{\gamma}\right) \\
& \nabla_{\mu}\left(A^{v} B_{\gamma}\right)=B_{\gamma}\left(\nabla_{\mu} A^{v}\right)+A^{v}\left(\nabla_{\mu} B_{\gamma}\right)
\end{aligned}
$$

Consider $\phi=A_{v} B^{v}$ to be a scalar for all vectors B^{v}.

$$
\begin{aligned}
& \partial_{\mu} \phi=B^{v} \partial_{\mu} A_{v}+A_{v} \partial_{\mu} B^{v} \\
& \begin{aligned}
\partial_{\mu} \phi & =\nabla_{\mu} \phi \\
\nabla_{\mu} \phi & =B^{v} \nabla_{\mu} A_{v}+A_{v} \nabla_{\mu} B^{v} \\
& =B^{v} \nabla_{\mu} A_{v}+A_{v}\left\{\partial_{\mu} B^{v}+\Gamma_{\mu \beta}^{v} B^{\beta}\right\} \\
& =B^{v}\left\{\nabla_{\mu} A_{v}+\Gamma_{\mu v}^{\alpha} A_{\alpha}\right\}+A_{v} \partial_{\mu} B^{v}
\end{aligned} \\
& \rightarrow B^{v}\left[\nabla_{\mu} A_{v}-\partial_{\mu} A_{v}+\Gamma_{\mu \nu}^{\alpha} A_{\alpha}\right]=0 \\
& \rightarrow \\
& \rightarrow \nabla_{\mu} A_{v}=\partial_{\mu} A_{v}-\Gamma_{\mu v}^{\alpha} A_{\alpha}
\end{aligned}
$$

Similarly, one can deduce:

$$
\begin{aligned}
\nabla_{\mu} A_{\beta_{1} \ldots \beta_{b}}^{\alpha_{1} \ldots \alpha_{a}} & \partial_{\mu} A^{\alpha_{1} \ldots \alpha_{a}}{ }_{\beta_{1} \ldots \beta_{b}} \\
& +\sum_{c=1}^{a} \Gamma_{\mu \gamma}^{a_{c}} A^{\alpha_{1} \ldots \alpha_{c-1} \gamma \alpha_{c+1} \ldots \alpha_{a}}{ }_{\beta_{1} \ldots \beta_{b}} \\
& -\sum_{c=1}^{a} \Gamma_{\mu \beta_{c}}^{\gamma} A^{\alpha_{1} \ldots \alpha_{c-1}}{ }_{\beta_{1} \ldots \beta_{c-1} 1 \beta_{c+1} \ldots \beta_{b}}
\end{aligned}
$$

for a tensor of type $\binom{a}{b}$.
e.g.:

1. $\binom{0}{2}$ tensor $A_{\alpha \beta}$:

$$
\nabla_{\mu} A_{\alpha \beta}=\partial_{\mu} A_{\alpha \beta}-\Gamma_{\mu \alpha}^{\gamma} A_{\gamma \beta}-\Gamma_{\mu \beta}^{\gamma} A_{\alpha \gamma}
$$

2. $\binom{2}{0}$ tensor $A^{\alpha \beta}$:

$$
\nabla_{\mu} A^{\alpha \beta}=\partial_{\mu} A^{\alpha \beta}+\Gamma_{\mu \gamma}^{\alpha} A^{\gamma \beta}-\Gamma_{\mu \gamma}^{\beta} A^{\alpha \gamma}
$$

3. $\binom{1}{1}$ tensor $A^{\alpha}{ }_{\beta}$:

$$
\nabla_{\mu} A^{\alpha}{ }_{\beta}=\partial_{\mu} A^{\alpha}{ }_{\beta}+\Gamma_{\mu \gamma}^{\alpha} A^{\gamma}{ }_{\beta}-\Gamma_{\mu \beta}^{\gamma} A^{\alpha}{ }_{\gamma}
$$

Since we have demanded the covariant differentiation is tensorial, we can deduce a transformation law for $\Gamma_{\alpha \beta}^{\mu}$.
Recall: $\partial^{\prime}{ }_{\mu} A^{\prime}{ }_{v}=J_{\mu}^{\alpha} J_{v}^{\beta} \partial_{\alpha} A_{\beta}+\left(J_{\mu}^{\alpha} \partial_{\alpha} J_{v}^{\beta}\right) A_{\beta}$
If $\nabla_{\mu} A_{v}$ is a $\binom{0}{2}$ tensor than

$$
\begin{aligned}
\nabla^{\prime}{ }_{\mu} A_{v}^{\prime} & =J_{\mu}^{\alpha} J_{v}^{\beta} \nabla_{\alpha} A_{\beta}=J_{\mu}^{\alpha} J_{v}^{\beta}\left(\partial_{\alpha} A_{\beta}-\Gamma_{\alpha \beta}^{\gamma} A_{\gamma}\right) \\
\nabla^{\prime}{ }_{\mu} A^{\prime}{ }_{v} & =\partial^{\prime}{ }_{\mu} A_{v}^{\prime}{ }_{v}-\Gamma_{\mu \nu}^{\prime \gamma} A_{\gamma}^{\prime} \\
& =J_{\mu}^{\alpha} J_{v}^{\beta} \partial_{\alpha} A_{\beta}+\left(J_{\mu}^{\alpha} \partial_{\alpha} J_{v}^{\beta}\right) A_{\beta}-\Gamma_{\mu \nu}^{\prime \rho} J_{\rho}^{\gamma} A_{\gamma}
\end{aligned}
$$

Hence we have
$-J_{\mu}^{\alpha} J_{v}^{\beta} \Gamma_{\alpha \beta}^{\gamma} A_{\gamma}=\left(J_{\mu}^{\alpha} \partial_{\alpha} J_{v}^{\gamma}\right) A_{\gamma}-\Gamma_{\mu \nu}^{\rho} J_{\rho}^{\gamma} A_{\gamma}$
We can cancel off the A_{γ} 's:
$-J_{\mu}^{\alpha} J_{v}^{\beta} \Gamma_{\alpha \beta}^{\gamma}=J_{\mu}^{\alpha} \partial_{\alpha} J_{v}^{\gamma}-\Gamma_{\mu \nu}^{\prime \rho} J_{\rho}^{\gamma}$
Hence:
$\Gamma_{\mu \nu}^{\prime \rho}=J_{\gamma}^{\prime \rho} J_{\mu}^{\alpha} J_{v}^{\beta} \Gamma_{\alpha \beta}^{\gamma}+J_{\gamma}^{\prime \rho} J_{\mu}^{\alpha} \partial_{\alpha} J_{v}^{\gamma}$
A connection which satisfies this transformation law is known as an affine connection.

Note:

1. $\Gamma_{\alpha \beta}^{\mu}$ is not a tensor of type $\binom{1}{2}$.
2. If we define the torsion $T_{\alpha \beta}^{\mu}=\Gamma_{[\alpha \beta]}^{\mu}=\frac{1}{2}\left[\Gamma_{\alpha \beta}^{\mu}-\Gamma_{\beta \alpha}^{\mu}\right]$ then:

$$
\begin{aligned}
& T_{\alpha \beta}^{\prime \mu}=J_{\rho}^{\prime \mu} J_{\alpha}^{\sigma} J_{\beta}^{\lambda} T_{\sigma \lambda}^{\rho}+J_{\rho}^{\prime \mu} J \partial_{\sigma} J_{\beta}^{\rho}-J_{\rho}^{\prime \mu} J_{\beta}^{\sigma} \partial_{\sigma} J_{\alpha}^{\rho} \\
& =J_{\rho}^{\prime \mu} J_{\alpha}^{\sigma} J_{\beta}^{\lambda} T_{\sigma \lambda}^{\rho} \\
& \rightarrow T_{\alpha \beta}^{\mu} \text { is a tensor. }
\end{aligned}
$$

If $T_{\alpha \beta}^{\mu}=0$ in one frame then it is so in all frames, and the connection symmetric and said to be torsion free.

3.2 Affine Geodesics

Consider a curve parameterized by u with tangent vector $T^{\mu}=\frac{d x^{\mu}}{d u}$, which connects two points $P\left(x^{\mu}(u)\right)$ and $Q\left(x^{\mu}(u+\delta u)\right)$ separated by δu. An affine geodesic is a curve defined by the parallelly transported tangent vector $\left(T^{\mu}(u)-\Gamma_{\alpha \beta}^{\mu} T^{\beta} \delta x^{\alpha}\right)$ from $P\left(T^{\mu}(u)\right)$ being parallel to that defined at $Q\left(T^{\mu}(u+\delta u)\right)$.
$\delta x^{\alpha}=T^{\mu} \delta u$
Through Taylor expansion, $T^{\mu}(u+\delta u)=T^{\mu}(u)+\delta u \frac{d T^{\mu}}{d u}+O(2)$.
Therefore, the curve between P and Q is an affine geodesic if:
$T^{\mu}(u)+\frac{d T^{\mu}}{d u} \delta u=(1+\lambda \delta u)\left[T^{\mu}(u)-\Gamma_{\alpha \beta}^{\mu} T^{\alpha}(u) T^{\beta}(u) \delta u\right]$
The coefficient $(1+\lambda \delta u)$ is 1 if $\delta u=0$.
$\rightarrow \frac{d T^{\mu}}{d u}+\Gamma_{\alpha \beta}^{\mu} T^{\alpha} T^{\beta}=\lambda T^{\mu}$
if one ignores $(\delta u)^{2}$.
Now $T^{\mu}=\frac{d x^{\mu}}{d u}$, therefore:
$\frac{d^{2} x^{\mu}}{d u^{2}}+\Gamma_{\alpha \beta}^{\mu} \frac{d x^{\alpha}}{d u} \frac{d x^{\beta}}{d u}=\lambda \frac{d x^{\mu}}{d u}$
Also:

$$
\begin{aligned}
T^{v} \nabla_{v} T^{\mu} & =T^{v}\left\{\partial_{v} T^{\mu}+\Gamma_{v \alpha}^{\mu} T^{\alpha}\right\} \\
& =\frac{d x^{v}}{d u} \frac{\partial T^{v}}{\partial x^{v}}+\Gamma_{v \alpha}^{\mu} T^{v} T^{\alpha} \\
& =\frac{d T^{v}}{d u}+\Gamma_{v \alpha}^{\mu} T^{v} T^{\alpha}
\end{aligned}
$$

\rightarrow the affine geodesic equation can be written as
$T^{\nu} \nabla_{v} T^{\mu}=\lambda T^{\mu}$.
It is said to be affinely parameterized if $\lambda=0$. Then u is an affine parameter.
Let us now generalize this concept to an arbitrary vector. If A^{μ} is a vector then it is parallelly transported along the curve if $T^{\nu} \nabla_{v} A^{\mu}=0$, i.e. $\frac{d A^{\mu}}{d u}+\Gamma_{\alpha \beta}^{\mu} T^{\alpha} A^{\beta}=0$.
\rightarrow the value of $A^{\mu}(u)$ is the solution of the above differential equation along the curve with initial conditions $A^{\mu}(0)$.

Consider the inner product of $d(T, A)$ of a parallelly transported vector A^{μ} along some curve which is affinely parameterized.
i.e. $T^{v} \nabla_{v} T^{\mu}=0$ and $T^{v} \nabla_{v} A^{\mu}=0$.
$T^{v} \nabla_{v}(d(T, A))=T^{v} \nabla_{v}\left(g_{\alpha \beta} T^{\alpha} A^{\beta}\right)$
$=T^{\alpha} A^{\beta} T^{v} \nabla_{v} g_{\alpha \beta}+g_{\alpha \beta} A^{\beta}\left(T^{v} \nabla_{v} T^{\alpha}\right)+g_{\alpha \beta} T^{\alpha}\left(T^{\nu} \nabla_{v} A^{\beta}\right)$
The second term is 0 because it is geodesic, while the third term is 0 because it is parallelly transported.
\rightarrow the inner product (i.e. norms and angles) is preserved along a geodesic if the metric is covariently conserved, i.e. $\nabla_{v} g_{\alpha \beta}=0$.

Note that parallel propagation is path dependent.
e.g. take a sphere. Consider two points P and Q on the equator, with R being the north pole. The points P and Q are separated by some angle θ, and can be individually joined to R along the surface by a "great circle".
$P Q R$ is pointing upwards at P, upwards at Q, and horizontally backwards (1) at R.
$P R$ is pointing upwards at P, and at an angle (2) at R.
The angle between (1) and (2) is θ.

