PC4771-Gravitation - Lectures 5 \& 6

2.5 Tangent Vectors

Consider two curves, $X_{1}{ }^{\mu}(u)$ and $X_{2}{ }^{\mu}(u)$
The curves are tangent at $u=u_{0}$ if:

1. They meet. $X_{1}{ }^{\mu}\left(u_{0}\right)=X_{2}{ }^{\mu}\left(u_{0}\right)$
2. They touch, i.e. they don't cross. $\frac{d X_{1}{ }^{\mu}}{d u}\left(u_{0}\right)=\frac{d X_{2}{ }^{\mu}}{d u}\left(u_{0}\right)$

The tangent vector to the curve at some point P with $u=u_{0}$ is defined to be

$$
T^{\mu}=\frac{d X^{\mu}}{d u}
$$

A congruence is defined to be a set of curves such that each point in the manifold lies on exactly one curve, e.g. lines of latitude on a sphere S^{2}.
In another coordinate system,

$$
T^{\prime \mu}=\frac{d X^{\prime \mu}}{d u}=\frac{\partial X^{\prime \mu}}{\partial X^{v}} \frac{d X^{v}}{d u}=J_{v}^{\prime \mu} T^{v}
$$

The tangent vectors "live" in the tangent space $T_{p}(M)$. (P stands for plane, M for manifold). Note that this tangent space depends on where you are on the manifold.

2.6 Vectors, Co-Vectors and Tensors

Any n-tuple (array of numbers) which transform like a tangent vector is a member of $T_{p}(M)$ and is called a vector. i.e. anything which transforms according to the rules

$$
A^{\prime \mu}=J_{v}^{\prime \mu} A^{v} \text { and } A^{\mu}=J_{v}^{\mu} A^{\prime v}
$$

is a vector. It can, and generally does, depend on position.
NB: vectors are defined at a point in M and can be thought of as a map $T_{P}(M) \rightarrow \Re$.
If A^{μ} and B^{μ} are vectors defined at some point P, then consider adding those vectors together $C^{\mu}=\alpha A^{\mu}+\beta B^{\mu}$:
$C^{\prime \mu}=\alpha A^{\prime \mu}+\beta B^{\prime \mu}$ by definition.
$C^{\prime \mu}=\alpha J_{v}^{\prime \mu} A^{v}+\beta J_{v}^{\prime \mu} B^{v}$
As both vectors are at the same point, both $J_{v}^{\prime \mu}$'s are the same.

$$
\begin{aligned}
C^{\prime \mu} & =J_{v}^{\prime \mu}\left[\alpha A^{v}+\beta B^{v}\right] \\
& =J_{v}^{\prime \mu} C^{v}
\end{aligned}
$$

Hence C^{μ} is also a vector at P .
Geometrically, we have shown that the tangent space $T_{P}(M)$ is a vector space (i.e. a space which allows the linear addition of vectors within in).

If $\phi=A_{\mu} B^{\mu}$ is a scalar for all vectors B^{μ}, then A_{μ} is a covector.
NB: in many books, including D'Inverno, covectors are called covariant vectors, and vectors are called contravarient vectors.
The question is how does A_{μ} transform under coordinate rotation?

We know that $\phi^{\prime}=\phi$ because ϕ is a scalar.
$A^{\prime}{ }_{\mu} B^{\prime \mu}=\phi^{\prime}=\phi=A_{\mu} B^{\mu}$
$A^{\prime}{ }_{\mu} J_{\alpha}^{\prime \mu} B^{\alpha}=A_{\alpha} B^{\alpha}$
$\left(A^{\prime}{ }_{\mu} J_{\alpha}^{\prime \mu}-A_{\alpha}\right) B^{\alpha}=0$
As this is true for all vectors B^{α}, we can use
$B^{\alpha}=\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right), \ldots$
hence:
$A^{\prime}{ }_{\mu} J_{\alpha}^{\prime \mu}-A_{\alpha}=0$
$\rightarrow A^{\prime}{ }_{\mu}=J_{\mu}^{\alpha} A_{\alpha}$
It is easy to show that:

1. $g_{\mu \nu} A^{\nu}$ is a covector
2. $g^{\mu \nu} B_{v}$ is a vector

Hence we call $A_{\mu}=g_{\mu \nu} \nu^{\nu}$ and $B^{\mu}=g^{\mu \nu} B_{v}$. So the metric and its inverse can be used to raise and lower indices.

The vectors live in the tangent space $T_{P}(M)$ of the manifold M, and the covectors live in the dual-space $T_{P}^{*}(M)$. This space is geometrically orthogonal to $T_{P}(M)$.

Note: vectors and covectors are defined as some point in the manifold. One can add vectors together if they are defined at the same point since $T_{P}(M)$ and $T_{P}^{*}(M)$ are vector spaces. But one cannot do this if they are defined at different points.

We now generalize and define an $\binom{a}{b}$ tensor at some point P in M to be a map

$$
\underbrace{T_{P}(\mu) \times \ldots \times T_{P}(\mu)}_{a} \times \underbrace{T_{P}^{*}(\mu) \times \ldots \times T_{P}^{*}(M)}_{b} \rightarrow R
$$

which transforms according to:

$$
A^{\prime \mu_{1} \ldots \mu_{a}}{ }_{v_{1} \ldots v_{b}}=\underbrace{J_{\alpha_{1}}^{\prime \mu_{1}} \ldots J_{\alpha_{a}}^{\mu_{a}}}_{a} \underbrace{J_{v_{1}}^{\beta_{1}} \ldots J_{v_{b}}^{\beta_{b}}}_{b} A^{\alpha_{1} \ldots \alpha_{a}}{ }_{\beta_{1} \ldots \beta_{b}}
$$

e.g. special cases:

- Vectors are $\binom{1}{0}$ tensors
- Covectors are $\binom{0}{1}$ tensors
- Scalars are $\binom{0}{0}$ tensors
- $g_{\mu \nu}$ is a $\binom{0}{2}$ tensor
- $g^{\mu \nu}$ is a $\binom{2}{0}$ tensor
- δ_{v}^{μ} is a $\binom{1}{1}$ tensor.

Important points:

1. If $A^{\mu_{1} \ldots \mu_{a}}{ }_{v_{1} \ldots v_{a}}=B^{\mu_{1} \ldots \mu_{a}}{ }_{v_{1} \ldots v_{a}}$ is true in one coordinate system or frame, then it is true in all.
2. If $A^{\mu_{1} \ldots \mu_{a}}{ }_{v_{1} \ldots v_{a}}=0$ in one frame, it is zero in all.
3. Two terms of the same "type" can be added together at some point P in M. If A and B are $\binom{2}{0}$ tensors, then $C^{\mu \nu}=A^{\mu \nu}+B^{\mu \nu}$ is a tensor of type $\binom{2}{0}$.
Proof:

$$
\begin{aligned}
C^{\prime \mu \nu} & =A^{\prime \mu \nu}+B^{\prime \mu \nu} \\
& =J_{\alpha}^{\prime \mu} J_{\beta}^{\prime \nu} A^{\alpha \beta}+J_{\alpha}^{\prime \mu} J_{\beta}^{\prime \nu} B^{\alpha \beta}
\end{aligned}
$$

This is true because $A^{\mu \nu}$ and $B^{\mu \nu}$ are tensors.

$$
\begin{aligned}
& C^{\prime \mu \nu}=J_{\alpha}^{\prime \mu} J_{\beta}^{\prime \nu}\left(A^{\alpha \beta}+B^{\alpha \beta}\right) \\
&=J_{\alpha}^{\prime \mu} J_{\beta}^{\prime \nu} C^{\alpha \beta} \\
& \rightarrow C^{\mu \nu} \text { is a }\binom{2}{0} \text { tensor. }
\end{aligned}
$$

4. If $C=A B$, where A is a tensor of type $\binom{a}{b}$ and B is a tensor of type $\binom{c}{d}$, then C is a tensor of type $\binom{a+c}{b+d}$.
$C^{\mu_{1} \ldots \mu_{a} \alpha_{1} \ldots \alpha_{c}}{ }_{v_{1} \ldots v_{a} \beta_{1} \ldots \beta_{d}}=A^{\mu_{1} \ldots \mu_{a}}{ }_{v_{1} \ldots v_{b}} b^{\alpha_{1} \ldots \alpha_{c}}{ }_{\beta_{1} \ldots \beta_{d}}$
See Questions Sheet 2, Number 6.
5. A tensor of type $\binom{a}{b}$ becomes of type $\binom{a-2}{b}$ upon contraction with the metric, and of type $\binom{a}{b-2}$ when contracted with the inverse metric.
e.g. $T^{\mu \nu \rho}{ }_{\alpha \beta}$ which is a $\binom{3}{2}$ tensor, then $g_{\mu \nu} T^{\mu \nu \rho}{ }_{\alpha \beta}$ is of type $\binom{1}{2}$ and $g^{\alpha \beta} T^{\mu \nu \rho}{ }_{\alpha \beta}$ is of type $\binom{3}{0}$.
6. One can define the inner product of two vectors T^{μ} and S^{ν} to be $d(S, T)=S_{\mu} T^{\mu}=g_{\mu \nu} T^{\mu} S^{\nu}$ which is a scalar.
The length of a vector is $\|T\|=(d(T, T))^{1 / 2}$, and the angle between S and T is defined by $\cos \theta=\frac{d(T, S)}{\|T\|\|S\|}$.

Notation

Symmetrization and antisymmetrization
We will from time to time use the permutation of indices:
() will mean Symmetrization
[] will mean antisymmetrization.
e.g.:

1. $\binom{0}{2}$ tensor $A_{\mu \nu}$:

$$
\begin{aligned}
& A_{(\mu v)}=\frac{1}{2}\left(A_{\mu \nu}+A_{v \mu}\right) \\
& A_{[\mu v]}=\frac{1}{2}\left(A_{\mu \nu}-A_{v \mu}\right)
\end{aligned}
$$

2. $\binom{0}{3}$ tensor $A_{\mu \nu \rho}$

$$
\begin{aligned}
& A_{(\mu v \rho)}=\frac{1}{3!}\left[A_{\mu v \rho}+A_{\rho \mu \nu}+A_{v \rho \mu}+A_{v \mu \rho}+A_{\rho v \mu}+A_{\mu \rho v}\right] \\
& A_{[\mu v \rho]}=\frac{1}{3!}\left[A_{\mu v \rho}+A_{\rho \mu \nu}+A_{v \rho \mu}-A_{v \mu \rho}-A_{\rho \mu \nu}-A_{\mu \rho v}\right]
\end{aligned}
$$

(Cyclic permutations, minus the anticyclic permutations)
Consider a few examples:
1.

$$
\begin{aligned}
A_{(\mu \nu \rho)} x^{\mu} x^{v} x^{\rho} & =\frac{1}{3!}\left[A_{\mu v \rho}+A_{\rho \mu v}+A_{v \rho \mu}+A_{\mu \rho v}+A_{v \mu \rho}+A_{\rho v \mu}\right] x^{\mu} x^{v} x^{\rho} \\
& =A_{\mu v \rho} x^{\mu} x^{v} x^{\rho}
\end{aligned}
$$

2. $A_{[\mu v \rho]} x^{\mu} x^{\nu} x^{\rho}=0$
3.

$$
\begin{aligned}
A_{(\mu v)} A^{[\mu \nu]} & =\frac{1}{2}\left(A_{\mu \nu}+A_{v \mu}\right) \frac{1}{2}\left(A^{\mu \nu}-A^{v \mu}\right) \\
& =\frac{1}{4} A_{\mu v} A^{\mu \nu}+A_{v \mu} A^{\mu \nu}-A_{\mu \nu} A^{v \mu}-A_{v \mu} A^{v \mu} \\
& =0
\end{aligned}
$$

2.7 Conformal Metrics

Two metrics $g_{\mu \nu}$ and $G_{\mu \nu}$ are conformally related if there exists a possibly spatially dependant function $\Omega\left(X^{\mu v}\right)$ such that

$$
G_{\mu \nu}=\Omega^{2} g_{\mu \nu}
$$

This is of interest because:

1. $d s_{g}{ }^{2}=g_{\mu \nu} d x^{\mu} d x^{v}$
$d s_{G}{ }^{2}=G_{\mu \nu} d x^{\mu} d x^{\nu}$
Hence $d s_{G}{ }^{2}=\Omega^{2} d s_{g}{ }^{2}$
\rightarrow the null curves $\left(d s^{2}=0\right)$ of both metrics are the same.
2. Consider two vectors A^{μ} and B^{μ}, then the angle between them is

$$
\begin{aligned}
& \cos \theta_{g}=\frac{g_{\mu \nu} A^{\mu} B^{v}}{\left(g_{\mu \nu} A^{\mu} A^{v}\right)^{1 / 2}\left(g_{\mu \nu} B^{\mu} B^{v}\right)^{1 / 2}} \\
& \cos \theta_{G}=\frac{G_{\mu v} A^{\mu} B^{v}}{\left(G_{\mu v} A^{\mu} A^{v}\right)^{1 / 2}\left(G_{\mu v} B^{\mu} B^{v}\right)^{1 / 2}} \\
& \rightarrow \cos \theta_{G}=\cos \theta_{g}
\end{aligned}
$$

So conformal transformations preserve angles.

