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Gravitational Redshift 
Consider a photon emitted with frequency !

e
 by a distant source (i.e. r ! " ). Using 

6.4, the frequency at r  is given by: 
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As r! 2GM , ! " #  and the photon is infinitely blue shifted. 
 
Now consider a source hovering just above the event horizon at r = 2GM + ! , 
emitting a photon of frequency !

e
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 !  is reduced, i.e. red shifted, as it climbs out of the potential well. 
 
7. FRW Universe 
7.1 Expansion, Isotropy & Homogeneity 
See Handout. 
 
7.2 FRW Metric 
One cannot derive the FRW metric directly from the observed expansion, isotropy 
and homogeneity. 
 

Isotropy about two points  global isotropy and homogeneity. 

 
r = distance from A. 
s = distance from B. 
Unfortunately, we do not have the luxury of having two independent observers. 
Hence we appeal to the cosmological principle, which is an extension of the 
Copernican Principle. It states that our place in space is typical. 
 
The cosmological principle implies the existence of observers. Since we want to work 
within the framework of General Relativity, and hence that of the general principle of 
covariance, we need to be careful about these observers. We want a set of observers 
which are “commoving” which agree on the global cosmic time, t  – this is often 
called Weyl’s Postulate. 
 
One could try to use static observers at the centre of galaxies, but galaxies have 
proper motions of order ~ 100km s!1  relative to the Hubble Flow (NB: the Hubble 



PC4771 – Gravitation – Lectures 21 & 22 

2 

Flow at 10Mpc  is about 700km s!1 ). Hence this would be an assumption. 
Conventionally, one now uses the CMBR to define this commoving rest frame. 
 
NB: the existence of a preferred rest frame is required to define the notion of thermal 
equilibrium and have the Planck Spectrum of the CMB. 
 
From these postulates (global homogeneity, isotropy and the existence of co-moving 
observers), is it possible to deduce that the metric that we want to look at is: 

ds
2
= dt

2
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III

2  
There are no cross-terms since they would introduce a preferred direction. d!

III

2  is 
the metric on a 3-space which is homogeneous and isotropic. a t( )  is known as the 
scale factor.  
 
There are three possibilities for d!

III

2  which are compatible with the existence of 6 
Killing vectors: 

1,0,0( ); 0,1,0( ); 0,0,1( )  - translational symmetries 
0, z,!y( ); z,0,!x( ); y,!x,0( )  - rotational symmetries. 

The form of the metric most used in astronomy is: 
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where k  is a constant, typically scaled to !1,0,1  which represents curvature. 
 
Surfaces of constant r  are spheres of surface area = 4!r2 . 
 
k = 0  
If k = 0 , then the Euclidean sections are: 
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This is flat Euclidean space. 
 
k = !1  
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If we set r = sinh ! , where 0 < ! < "  
 d!
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2
= d" 2

+ sinh
2 " d# 2 + sin2#d$ 2( )  

Which is the metric on a hyperboloid. 
If we say ! = const , then we get: 

 
 negative curvature 



PC4771 – Gravitation – Lectures 21 & 22 

3 

 
k = +1  
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If we set r = sin ! , 0 ! " ! # : 
d!

III

2
= d" 2

+ sin
2 " d# 2 + sin2#d$ 2( )  

Again set ! = const . 

 
 Positive curvature 
This is the metric on S3 . 
 
Therefore,  
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NB: we can define C
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Now consider the introduction of a modified time coordinate ! , defined by: 

ad! = dt"! =
dt '

a t '( )0
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!  is called the conformal time. 
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If k = 0  with this time coordinate, the FRW universe is conformally Minkowski 
spacetime. 
 
NB: one can make d!
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2  conformally Euclidean by setting 
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To understand what is going on, suppress one of the dimensions. 
k = 0 : 

 
k = 1  
Consider drawing a rectangular grid on a balloon which you then inflate. 
 
7.3 Friedman & Raychaudori Equations 
One can show that: 
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 is the metric on the Euclidean sections, i.e. 
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We will consider the effects of a homogeneous and isotropic perfect fluid. 
Tµ! = " + P( )UµU! # Pgµ!  

Uµ = 1,0( )  
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 - Friedmann Equation. 


