Einstein's Equation:

$$
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=8 \pi \hat{G} T_{\mu \nu}
$$

where $G_{\mu \nu}$ is the Einstein Tensor, and \hat{G} is the Newtonian constant.
Note:

1. The equation is non-linear in the metric, which we should expect since there are no neutral observers \rightarrow no superposition of sources as in Maxwell's EM equations (methods used in EM (like method of images) would work in gravity because the equations aren't linear).
2. Alternative:
$G=g^{\mu \nu} G_{\mu \nu}=R-\frac{1}{2} g^{\mu \nu} g_{\mu \nu} R=-R=8 \pi \hat{G} T$
where \hat{G} is the Newtonian constant, and $T=g^{\mu \nu} T_{\mu \nu}$.
G is the scalar associated with the Einstein tensor (and Newton's constant)
$\rightarrow R_{\mu \nu}=8 \pi \hat{G}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)$
3. The addition of a term $\Lambda g_{\mu \nu}$ is compatible with our criteria, where Λ is a constant. Λ represents vacuum energy, and is known as the cosmological constant. We will return to this in section 7.
Einstein called Λ his greatest blunder, but cosmological observations suggest that it is non-zero (but very small).

5.3 Newtonian Limit

Consider the line element

$$
d s^{2}=e^{2 \phi} d t^{2}-d x^{2}
$$

with $\phi=\phi(x) \ll 1$. This ϕ will represent the gravitational potential. The Einstein equations become the Poisson equations in this Newtonian space.

$$
\begin{aligned}
& \rightarrow L_{e f f}=e^{2 \phi} \dot{t}^{2}-\dot{x}^{2} \\
& \frac{\partial L_{e f f}}{\partial \dot{t}}=2 e^{2 \phi} \dot{t} ; \frac{d L_{e f f}}{d t}=0 \rightarrow \ddot{t}=0 \\
& \frac{\partial L_{e f f}}{\partial \dot{x}}=-2 \dot{x} ; \frac{\partial L_{e f f}}{\partial x}=2 \partial_{x} \phi e^{2 \phi} \dot{t}^{2} \\
& \rightarrow \ddot{x}+\partial_{x} \phi e^{2 \phi} \dot{t}^{2}=0 \\
& \Gamma^{x}=\partial_{x} \phi e^{2 \phi}, \Gamma=0 \text { otherwise } \\
& \text { For } \phi \ll 1, \\
& \frac{\ddot{x}}{\dot{t}^{2}}=\frac{\partial^{2} x}{\partial t^{2}}=-\partial_{x} \phi=-\nabla \phi
\end{aligned}
$$

\rightarrow Newtonian equations of motion for test particle.
Now consider
$R_{\mu \nu}=R^{\rho}{ }_{\mu \rho v}=\partial_{\rho} \Gamma^{\rho}{ }_{\mu \nu}-\partial_{\nu} \Gamma^{\rho}{ }_{\mu \rho}+\Gamma^{\rho}{ }_{\gamma \rho} \Gamma^{\gamma}{ }_{\mu \nu}-\Gamma^{\rho}{ }_{\nu} \Gamma^{\gamma}{ }_{\mu \nu}$
Use $\Gamma^{x}{ }_{t t}=\partial_{x} \phi+\nabla\left(\phi^{3}\right) \rightarrow \Gamma \sim \phi \rightarrow \Gamma^{2} \sim \phi^{2}$ (very small)
Therefore only need to calculate the first two terms.

$$
\begin{aligned}
R_{\mu \nu} & \approx \partial_{\rho} \Gamma^{\rho}{ }_{\mu \nu}-\partial_{v} \Gamma^{\rho}{ }_{\mu \rho} \\
& =\partial_{t} \underbrace{\Gamma^{t}{ }_{\mu \nu}}_{=0}-\partial_{\nu} \Gamma^{x}{ }_{\mu \nu}-\partial_{\nu} \underbrace{\Gamma^{t}}_{=0}{ }_{\mu t}-\partial_{\nu} \underbrace{\Gamma^{x}{ }_{\mu x}}_{=0}
\end{aligned}
$$

Therefore $R_{\mu \nu}=\partial_{x} \Gamma^{x}{ }_{\mu \nu}$ (only non-zero part).
$R_{\mu \nu}=\left\{\begin{array}{cc}\partial_{x}{ }^{2} \phi \quad \mu \nu=t t \\ 0 & \text { otherwise }\end{array}\right.$
Hence $R_{t t}=\nabla^{2} \phi$

Now consider
$T_{\mu \nu}=(P+\rho) U_{\mu} U_{v}-P g_{\mu \nu}$
$T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T=U_{\mu} U_{v}(P+\rho)-\frac{1}{2}(P-\rho) g_{\mu \nu}$
In the non-relativistic limit, $u_{\mu}=(1,2)$ and $\rho \ll P$
$\rightarrow R_{t t}=\nabla^{2} \phi=8 \pi G\left(T_{t t}-\frac{1}{2} g_{t t} T\right)=4 \pi G \rho$
Poisson equation $\nabla^{2} \phi=4 \pi G \rho$, hence $\phi=-\frac{G M}{r}$.

5.4 Gravitational Radiation

Consider a metric with a small perturbation from Minkowski spacetime.

$$
g_{\mu \nu}=\eta_{\mu \nu}+\varepsilon h_{\mu \nu}(\varepsilon \ll 1)
$$

created by a matter distribution $\varepsilon T_{\mu \nu}$.
Since $g^{\mu \nu} g_{\mu \rho}=\delta_{\rho}^{\mu+o\left(\varepsilon^{2}\right)}$, we must have that

$$
g^{\mu \nu}=\eta^{\mu \nu}-\varepsilon h^{\mu \nu}
$$

hence,
$\Gamma^{\mu}{ }_{\alpha \beta}=\frac{1}{2} \varepsilon\left(-\partial^{\mu} h_{\alpha \beta}+\partial_{\alpha} h_{\beta}{ }^{\mu}+\partial_{\beta} h_{\alpha}{ }^{\mu}\right)+O\left(\varepsilon^{2}\right)$
and

$$
\begin{aligned}
R_{\mu \nu} & =R^{\rho}{ }_{\mu \rho v} \\
& =\partial_{\rho} \Gamma^{\rho}{ }_{\mu \nu}-\partial_{\mu} \Gamma^{\rho}{ }_{v \rho}+O\left(\varepsilon^{2}\right) \\
& =\frac{1}{2} \varepsilon\left(-\square h_{\mu \nu}+\partial_{\mu}\left(\partial_{\rho} h^{\rho}{ }_{v}\right)+\partial_{v}\left(\partial_{\rho} h^{\rho}{ }_{\mu}\right)-\partial_{\mu} \partial_{v} h\right)+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

where $\quad=\partial_{\rho} \partial^{\rho}$ and $h=h^{\rho}{ }_{\rho}$
Now consider the effect of a coordinate transformation.
$x^{\prime \mu}=x^{\mu}+\varepsilon \xi^{\mu}$
$\rightarrow J_{\alpha}^{\prime \mu}=\delta_{\alpha}^{\mu}+\varepsilon \partial_{\alpha} \xi^{\mu}$ and $J_{\alpha}^{\mu}=\delta_{\alpha}^{\mu}-\varepsilon \partial_{\alpha} \xi^{\mu}+O\left(\varepsilon^{2}\right)$
If $h_{\mu \nu}^{\prime}$ is the metric perturbation in the new coordinate system, then
$\eta_{\mu \nu}+\varepsilon h^{\prime}{ }_{\mu \nu}=J_{\mu}^{\alpha} J_{v}^{\beta}\left(\eta_{\alpha \beta}+\varepsilon h_{\alpha \beta}\right)=\eta_{\mu \nu}+\varepsilon\left(h_{\mu \nu}-\partial_{\mu} \xi_{v}-\partial_{v} \xi_{\mu}\right)+O\left(\varepsilon^{2}\right)$
\rightarrow physical processes should be invariant under the "gauge transformation" $h_{\mu \nu}^{\prime}=h_{\mu \nu}-\partial_{\mu} \xi_{\nu}-\partial_{v} \xi_{\mu}$.
(c.f. $A^{\prime}{ }_{\mu}=A_{\mu}+\nabla_{\mu} \phi$ in ED)

Consider $\partial^{\mu} h^{\prime}{ }_{\mu \nu}-\frac{1}{2} \partial_{v} h^{\prime}=\partial^{\mu} h_{\mu \nu}-\frac{1}{2} \partial_{v} h-\square \xi_{v}$
\rightarrow by a gauge transformation we can set $\partial^{\mu} h^{\prime}{ }_{\mu \nu}-\frac{1}{2} \partial_{\nu} h^{\prime}=0$ if we choose
$\square \xi_{v}=\partial^{\mu} h_{\mu \nu}-\frac{1}{2} \partial_{v} h$
Hence, we can always choose the de-Donder gauge where $\partial^{\mu} h_{\mu \nu}=\frac{1}{2} \partial_{\nu} h$. Note that this is similar to the choice of the Lorentz gauge in EM.
$\rightarrow R_{\mu \nu}=-\frac{1}{2} \varepsilon \square h_{\mu \nu} \rightarrow \square h_{\mu \nu}=-16 \pi G\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)$
This is the wave equation for the generation and propagation of gravitational waves. It is very similar to that for dipole EM radiation.
Consider free wave-like solutions with $T_{\mu \nu}=0$, i.e. $\square h_{\mu \nu}=0$.
Solutions $h_{\mu \nu}=e_{\mu \nu} e^{i k x}$
$e_{\mu \nu}$ is the polarization tensor. $k x=k_{\mu} x^{\mu}$.
$\square h_{\mu \nu}=0 \rightarrow k_{\mu} k^{\mu}=0$ i.e. k is null.
$\partial^{\mu} h_{\mu \nu}-\frac{1}{2} \partial_{v} h=0 \rightarrow p_{\mu \nu} k^{\mu}=\frac{1}{2} k_{v} e^{\mu}{ }_{\mu}\left({ }^{*}\right)$
$e_{\mu \nu}$ has 10 degrees of freedom (4×4 symmetric tensor), but * is 4 equations \rightarrow only 6 degrees of freedom (maximum).
Moreover, for a wave of the form $e_{\mu \nu}$, a further gauge transformation can be made, in this form: $e^{\prime}{ }_{\mu \nu}=e_{\mu \nu}+\alpha_{\mu} k_{\nu}+\alpha_{\nu} k_{\mu}$ using $\xi_{\mu}=i \alpha_{\mu} e^{i k \cdot x}$, in which α_{μ} is arbitrary and * is unchanged.
Since α_{μ} is a 4-vector, this removes 4 degrees of freedom. $\rightarrow 2$ degrees of freedom for free gravitational waves, i.e. two polarization states.
Consider an x-directed wave $k^{0}=k^{\prime}=k, k^{2}=k^{3}=0$, then
$h_{\mu \nu}=\left(\begin{array}{c:c}0 & 0 \\ \hdashline 0 & h_{t} \\ h_{x} & h_{x}\end{array}\right) e^{i k \cdot x}$
$h_{\mu \nu}=h_{t} e^{t}{ }_{\mu \nu}+h_{x} e^{x}{ }_{\mu \nu}$
where $e^{t}{ }_{\mu \nu}=\left(\begin{array}{c:c}0 & 0 \\ \hdashline 0 & 1 \\ 0 & 0 \\ & 0\end{array}\right), e^{x}{ }_{\mu \nu}=\left(\begin{array}{c:c}0 & 0 \\ \hdashline 0 & 0 \\ 0 & 1 \\ & 1\end{array}\right)$
In contrast to EM radiation, gravitational radiation is generated by the mass quadropole: Power $P=\frac{G}{5}\left|\dddot{I}_{i j}\right|$, where $I_{i j}=\int e\left(x_{i} x_{j}-\frac{1}{3} \delta_{i j} \underline{x}^{2}\right) d^{3} x$ is the quadrapole of the matter distribution $\rho(\underline{x})$.

Section 6 - Schwartzchild solution

6.1 - Spherically Symmetric Vacuum Solution

Vacuum $\rightarrow T_{\mu \nu}=0 \rightarrow R_{\mu \nu}=0$ except at one point.
Spherically symmetric with area of the 2 -sphere $4 \pi r^{2}$.
$\rightarrow d s^{2}=A(r, T) d T^{2}-2 B(r, T) d T d r-C(r, T) d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$
Consider a change of timescale $T=T(t, r)$
$\rightarrow d T=\dot{T} d t+T^{\prime} d r$, where $\dot{T}=\frac{\partial T}{\partial t}$ and $T^{\prime}=\frac{\partial T}{\partial r}$.
Therefore
$d s^{2}=A \dot{T}^{2}+2 \dot{T}\left(A T^{\prime}-B\right) d t d r-\left(C+2 B T^{\prime}-A T^{\prime 2}\right) d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$
If we choose $A T^{\prime}=B$ and set coefficient of $d t^{2}=e^{\nu(t, r)}$, and coefficient of
$d r^{2}=-e^{\lambda(r, t)} \rightarrow$ most general spherically symmetric metric, i.e.
$d s^{2}=e^{\nu(t, r)} d t^{2}-e^{\lambda(t, r)} d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \alpha d \phi^{2}\right)$
$\rightarrow g_{\mu \nu}=\operatorname{diag}\left(e^{\nu},-e^{\lambda},-r^{2},-r^{2} \sin ^{2} \alpha\right)$
$g^{\mu \nu}=\operatorname{diag}\left(e^{-\nu}, e^{-\lambda},-\frac{1}{r^{2}},-\frac{1}{r^{2} \sin ^{2} \alpha}\right)$
To compute the Christoffel symbols, use
$L_{e f f}=\left(\frac{d s}{d \tau}\right)^{2}=e^{\nu} \dot{t}^{2}-e^{\lambda} \dot{r}^{2}-r^{2}\left(\dot{\theta}^{2}+\sin ^{2} \alpha \dot{\phi}^{2}\right)$
For t:
$\frac{\partial L_{e f f}}{\partial \dot{t}}=2 e^{\nu} \dot{t} ; \frac{\partial L_{\text {eff }}}{\partial t}=\frac{\partial v}{\partial t} e^{\nu} \dot{t}^{2}-\frac{\partial \lambda}{\partial t} e^{\lambda} \dot{r}^{2}$
$\rightarrow \ddot{t}+\frac{1}{2} \frac{\partial v}{\partial t} \dot{t}+\frac{\partial v}{\partial r} \dot{r} \dot{t}+\frac{1}{2} \frac{\partial \lambda}{\partial t} e^{\lambda-v} r^{-2}=0$
$\Gamma^{t}{ }_{t t}=\frac{1}{2} \frac{\partial v}{\partial t} ; \Gamma^{t}{ }_{r t}=\frac{1}{2} \frac{\partial v}{\partial r} ; \Gamma^{t}{ }_{r r}=\frac{1}{2} e^{\lambda-v} \frac{\partial \lambda}{\partial t}$
Similarly for (r), (θ) and (ϕ).
Then compute $R_{\mu \nu}=R^{\rho}{ }_{\mu \rho v}=\partial_{\rho} \Gamma^{\rho}{ }_{\mu \nu}-\partial_{v} \Gamma^{\rho}{ }_{\mu \rho}+\Gamma^{\rho}{ }_{\gamma \rho} \Gamma^{\gamma}{ }_{\mu \nu}-\Gamma^{\rho}{ }_{\nu} \Gamma^{\gamma}{ }_{\mu \rho}$, from which we can derive:
$R_{t t}=\frac{1}{2} e^{v-\lambda}\left(v^{\prime \prime}+\frac{1}{2} v^{\prime}\left(v^{\prime}-\lambda^{\prime}\right)+\frac{2 v^{\prime}}{r}\right)+\dot{\lambda}(\dot{v}-\dot{\lambda})-\frac{1}{2} \ddot{\lambda}$
$R_{t r}=\frac{\dot{\lambda}}{2 r}$
$R_{r r}=\frac{1}{2} e^{v-\lambda}\left(\ddot{\lambda}-\frac{1}{2} \dot{\lambda}(\dot{v}-\dot{\lambda})\right)-\frac{1}{2}\left(v^{\prime \prime}+\frac{1}{2} v^{\prime}\left(v^{\prime}-\lambda^{\prime}\right)-\frac{2 \lambda^{\prime}}{r}\right)$
$R_{\theta \theta}=1-e^{-\lambda}\left(1+\frac{1}{2} r\left(v^{\prime}-\lambda^{\prime}\right)\right)$
$R_{\phi \phi}=\sin ^{2} \theta R_{\theta \theta}$

