PC4771 - Gravitation - Lectures 13 \& 14

4.4 Geodesic Deviation

$T^{\mu}=\frac{d x^{\mu}}{d t}$
$S^{\mu}=\frac{d x^{\mu}}{d s}$
There are four possible second derivatives:
$\frac{d^{2} x^{\mu}}{d t^{2}}=T^{\alpha} \partial_{\alpha} T^{\mu}=\frac{d x^{\alpha}}{d t} \frac{\partial}{\partial x^{\alpha}}\left(\frac{d T^{\mu}}{d t}\right)$
$\frac{d^{2} x^{\mu}}{d s^{2}}=S^{\alpha} \partial_{\alpha} S^{\mu}$
$\frac{d^{2} x^{\mu}}{d s d t}=S^{\alpha} \partial_{\alpha} T^{\mu}$
$\frac{d^{2} x^{\mu}}{d t d s}=T^{\alpha} \partial_{\alpha} S^{\mu}$
Of course, $\frac{d^{2} x^{\mu}}{d s d t}=\frac{d^{2} x^{\mu}}{d t d s}$ as the derivatives wrt s and t commute.
$\rightarrow S^{\alpha} \partial_{\alpha} T^{\mu}=T^{\alpha} \partial_{\alpha} S^{\mu}$
$\rightarrow S^{\alpha} \nabla_{\alpha} T^{\mu}=T^{\alpha} \nabla_{\alpha} S^{\mu}$ if $\Gamma^{\mu}{ }_{\alpha \beta}=\Gamma^{\mu}{ }_{\beta \alpha}$.
This means that it doesn't matter which way around the loop you go.
Now consider

$$
\begin{aligned}
T^{\alpha} \nabla_{\alpha}\left(T^{\beta} \nabla_{\beta} S^{\mu}\right) & =T^{\alpha} \nabla_{\alpha}\left(S^{\beta} \nabla_{\beta} T^{\mu}\right) \\
& =\left(T^{\alpha} \nabla_{\alpha} S^{\beta}\right)\left(\nabla_{\beta} T^{\mu}\right)+T^{\alpha} S^{\beta} \nabla_{\alpha} \nabla_{\beta} T^{\mu} \\
& =\left(S^{\alpha} \nabla_{\alpha} T^{\beta}\right)\left(\nabla_{\beta} T^{\mu}\right)+T^{\alpha} S^{\beta}\left[\nabla_{\beta} \nabla_{\alpha} T^{\mu}+R^{\mu}{ }_{\rho \alpha \beta} T^{\rho}\right] \\
& =S^{\beta} \nabla_{\beta} \underbrace{\left(T^{\alpha} \nabla_{\alpha} T^{\mu}\right)}_{=0}+R^{\mu}{ }_{\rho \alpha \beta} T^{\rho} T^{\alpha} S^{\beta}
\end{aligned}
$$

$\left(T^{\alpha} \nabla_{\alpha} T^{\mu}\right)$ is zero for an affinely parameterized geodesic.
$\rightarrow\left(T^{\alpha} \nabla_{\alpha}\right)\left(T^{\beta} \nabla_{\beta}\right) S^{\mu}=R^{\mu}{ }_{\rho \alpha \beta} T^{\rho} T^{\alpha} S^{\beta}$ along an affinely parameterized geodesic.
Consider two particles A and B moving along geodesics parameterized by t. If δx^{μ} is the difference between them i.e. $S^{\mu}\left(=\frac{d x^{\mu}}{d s} \delta s\right)=\delta x^{\mu}$, then $\frac{d^{2}}{d \tau^{2}} \delta x^{\mu}=R^{\mu}{ }_{\rho \alpha \beta} T^{\rho} T^{\alpha} T^{\beta} \delta x^{\beta}$.

This is the equation of geodesic deviation.

5. Einstein Equations

5.1 Energy-Momentum Tensor

Consider the tensor $T^{\mu \nu}=(\rho+P) U^{\mu} U^{\nu}-P \eta^{\mu \nu}$, and assume that it is conserved, wheres

- $\quad \rho$ is density
- $\quad P$ is pressure
- $\quad U^{\mu}=\gamma(1, \underline{v})$ of special relativity
$\partial_{\mu} T^{\mu \nu}=\partial_{\mu}\left[(\rho+P) U^{\mu}\right] \cdot U^{\nu}+(\rho+P) U^{\mu} \partial_{\mu} U^{\nu}-\partial^{\nu} P$
In the non-relativistic limit:

1. $U^{\mu}=\left(1, v^{i}\right)+O\left(v^{2}\right)$
2. $\rho \gg P$
3. $v \dot{P} \ll|\nabla P|$, so pressure gradients dominate.

Consider $v=0$ and $v=i$ as separate cases.
$v=0$:
$\partial_{\mu}[(\rho+P)] U^{\mu}-\dot{P}=0$
$\rightarrow \dot{\rho}+\rho \underline{\nabla} \cdot \underline{v}=0$ (1)
This is the energy conservation / continuity equation.
$v=i:$
$\left(\partial_{\mu}(\rho+P) U^{\mu}\right) v^{i}+(\rho+P)\left(\dot{v}^{i} \partial_{j} v^{i}\right)-\partial^{j} P=0$
Substitute the continuity equation into this, and the first term drops out, leaving
$\rho\left[\dot{v}^{i}+v^{j} \partial_{j} v^{i}\right]=\partial^{j} P$
$\rightarrow \rho\left(\frac{d \underline{v}}{d t}+(\underline{v} \cdot \underline{\nabla}) \underline{v}\right)=-\underline{\nabla} P$
This is the momentum conservation, aka Newton's second law.
These two equations are the equations of fluid dynamics.
$T^{\mu v}$ is the energy-momentum tensor for a perfect fluid. In general,
$T^{\mu \nu}=\left(\begin{array}{c:c}T^{00} & T^{i 0} \\ \hdashline T^{-\bar{i}} & T^{i \bar{j}}\end{array}\right)$
T^{00} is the energy gdensity.
$T^{i 0}$ and $T^{0 i}$ is the momentum flux.
Down the diagonal part of $T^{i j}$ is the pressure.
Off the diagonal of $T^{i j}$ is the stress, or anisotropic pressure.
Another example is electromagnetism.
$F^{\mu \nu}=\left(\begin{array}{cccc}0 & E_{1} & E_{2} & E_{3} \\ -E_{1} & 0 & B_{3} & -B_{2} \\ -E_{2} & -B_{3} & 0 & B_{1} \\ -E_{3} & B_{2} & -B_{1} & 0\end{array}\right)$
(See 1.4.6)
$T_{\mu \nu}=\frac{1}{4 \pi}\left(F_{\mu \beta} F^{\rho}{ }_{\nu}+\frac{1}{2} g_{\mu \nu} F^{2}\right)$
where $F^{2}=F_{\alpha \beta} F_{\alpha \beta}$.
$T_{00}=\frac{1}{8 \pi}\left(\underline{E}^{2}+\underline{B}^{2}\right)-$ energy density
$T_{0 i}=\frac{1}{4 \pi}(\underline{E} \times \underline{B})$ - Poynting Vector (momentum flux of the electromagnetic field)

If we take $\partial_{\mu} T^{\mu \nu}=0$, then we get the Maxwell equations in ElectroDynamics.

In special relativity, energy and momentum conservation are given by $\partial^{\mu} T_{\mu \nu}=0$.
In GR, $\nabla^{\mu} T_{\mu \nu}=0$ and $T^{\mu \nu}=(\rho+P) U^{\mu} U^{\nu}-P g^{\mu \nu}$ for a perfect fluid.
The energy momentum tensor will play the role of a generalized concept of mass. For a perfect fluid, the Weak Energy Condition implies that $\rho>0$ and $\rho+P>0$.
Also, the Strong Energy Condition implies that $\rho+3 P>0$.

Newtonian gravity

$\phi \equiv$ gravitational potential ("if you know this, you know everything")
$\underline{F}=-\underline{\nabla} \phi \equiv$ gravitational force
$\underline{\nabla}^{2} \phi=4 \pi G \rho \equiv$ Poisson equation - links ϕ to ρ. (c.f. electomagnetism).
Gravitational force can be set to zero at some point \rightarrow existence of freely falling frames. But tidal gravitational forces $\frac{\partial F_{i}}{\partial x_{j}}=\frac{d^{2} \phi}{d x_{i} d x_{j}}$ cannot be removed (see examples 1, question 7). [Example of tidal gravitational forces: the effect of the moon on the ocean, i.e. tides]

Recall SEP
Coordinates in a lift are x^{μ}, coordinates relative to the ground are $x^{\prime \mu}$.
SEP \rightarrow the observer in the lift experiences special relativity $-\frac{d^{2} x^{\mu}}{d \tau^{2}}=0$ (2) and $\eta_{\alpha \beta} \frac{d x^{\alpha}}{d t} \frac{d x^{\beta}}{d t}=\left\{\begin{array}{cc}1 & \text { particles } \\ 0 & \text { light }\end{array}\right.$
Consider the coordinate transformation.
$d x^{\mu}=J^{\mu}{ }_{v} d x^{\prime \nu}$
$\rightarrow \frac{d x^{\mu}}{d \tau}=J^{\mu}{ }_{v} \frac{d x^{\nu}}{d \tau}$
Hence equation 1 becomes $n_{\alpha \beta} J^{\alpha}{ }_{\mu} J^{\beta}{ }_{v} \frac{d x^{\prime \mu}}{d \tau} \frac{d x^{\prime \nu}}{d \tau}=1$ or 0
If we define $g_{\mu \nu}=J^{\alpha}{ }_{\mu} J^{\beta}{ }_{\nu} \eta_{\alpha \beta}$ then:
$g_{\mu \nu} \frac{d x^{\prime \mu}}{d \tau} \frac{d x^{\prime \nu}}{d \tau}=1$ or 0
Hence equation 2 becomes:
$\frac{d^{2} x^{\mu}}{d \tau^{2}}=J^{\mu}{ }_{v} \frac{d^{2} x^{\prime V}}{d \tau^{2}}+\partial^{\prime}{ }_{\gamma} J^{\mu}{ }_{v} \frac{d x^{\prime \gamma}}{d \tau} \frac{d x^{\prime V}}{d \tau}=0$
$\rightarrow J^{\mu}{ }_{v} \frac{d^{2} x^{\prime V}}{d \tau^{2}}+J^{\rho}{ }_{\gamma} \partial_{\rho} J^{\mu}{ }_{v} \frac{d x^{\prime \gamma}}{d \tau} \frac{d x^{\prime \nu}}{d \tau}=0$
$\rightarrow \frac{d^{2} x^{\prime \alpha}}{d \tau^{2}}+\left(J^{\prime \alpha}{ }_{\mu} J^{\rho}{ }_{\gamma} \partial_{\rho} J^{\mu}{ }_{\nu}\right) \frac{d x^{\prime \gamma}}{d \tau} \frac{d x^{\prime \nu}}{d \tau}=0$

Hence $\frac{d^{2} x^{\prime \alpha}}{d \tau^{2}}+\Gamma^{\prime \alpha}{ }_{\gamma} \frac{d x^{\prime \gamma}}{d \tau} \frac{d x^{\prime \nu}}{d \tau}=0$
From the point of view of an observer on the ground, the equation of motion is the geodesic equation.
\rightarrow our new theory of gravity will replace ϕ with $g_{\mu \nu}$ and $\underline{F}=-\underline{\nabla} \phi$ with $\ddot{x}^{\mu}+\Gamma^{\mu}{ }_{\alpha \beta} \dot{x}^{\alpha} \dot{x}^{\beta} \rightarrow$ test particles and light rays will move on geodesics.
And the Poisson equation will be replaced by the Einstein Equation.

Note: we have already shown that in a LIF $\Gamma^{\mu}{ }_{\alpha \beta}$ can be set to zero at a point, but that $\partial_{\rho} \Gamma^{\mu}{ }_{\alpha \beta}$ cannot. This is equivalent to removing the gravitational force at that point, but not the tidal fields. It hints that tidal fields are encoded in the derivative of $\partial_{\rho} \Gamma^{\mu}{ }_{\alpha \beta} \sim R^{\mu}{ }_{\rho \alpha \beta}$.

One cannot derive the Einstein Equation. It is a particular choice which works in practice. It fulfils various simple criteria.

1. It relates the metric, plus first and second derivatives, to the energymomentum tensor.
$\rightarrow G\left(g_{\mu \nu}, \partial g_{\mu \nu}, \partial^{2} g_{\mu \nu}\right) \simeq T$
2. It must be coordinate-independent.
\rightarrow it must be tensorial.
3. Energy-Momentum has to be conserved.

$$
\rightarrow \nabla_{\mu} T^{\mu v}=0
$$

4. It should become the Poisson equation in the non-relativistic limit. (see 5.3)
(1) and (2) imply that $G=G\left(g_{\mu \nu}, R_{\mu \nu}, R, R_{\mu \nu \rho \sigma}\right)$
(3) \rightarrow if $G_{\mu \nu}=8 \pi G T_{\mu \nu}$, where G is the gravitational constant, then $\nabla^{\mu} G_{\mu \nu}=0$.

Therefore $G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R$ is a suitable choice.
\rightarrow Einstein Equation: $G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=8 \pi G T_{\mu \nu}$

