PC4771 — Gravitation — Lectures 11 & 12

Consider coordinates (¢,7,6) and (¢',7',0') where:
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Now work out the geodesic equation.
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rw” is the centrifugal force - @ X (@ xr)

2rw? is the Coriollis force 2(@ X v)
t

4. Curvature
Consider V,V ¢—V V ¢, the second order differential commutator for a scalar.

VVo-V V=V A-VA
where A, =V 0=0,9
=9,4,-T7,4 -{9,4,-T7,A }
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The first part is zero as partial derivatives commute.

The second part is zeroas I'",, =T7
2>V,Ve-VV =0

- covariant derivates commute for a scalar.

However, this is not true for a vector, covector or tensor (see sheet)
(V,V,-V.V,)a?=(0,I",, 8,1, +T7" I, —T" 77, )A°
(V,V,-V,V,)A, =(0,r", -0, +T7, I“ —T7 T )A,
If we define:

Rf,,=0I%, —0I" +T° 17 —T°T7,

then:

(V,V,-V,V,)A" =R, A"
and

(V,V,-V,V, )4, =R, A,

R’,, isa () tensor.
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Ry = gﬁpR"auv isa (4) tensor.
We can define the Ricci tensor:
R,LLV = Rau(xv = gaﬁRauﬁv = gaﬁRa/Jﬁv
and the Ricci scalar

R= Raa = gaﬁRaﬁ = gaﬁRaﬁ

4.2 Symmetries of Riemann tensor and the Bianchi Identity
Consider a local inertial frame: I'* ; =0 at a point (NB: d,I'* 5 #0), then

Rpa,uv = a,ul—‘pocv - avl—‘poz,u

. 1
Now substitute T'?, = Egpy (—aygav +0,8, + avgw), then:
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R, = 3 P [aﬂamgyv +0,0, 800 — 9,0, 80 avaagw]
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>R, = E[G#Bagw +0,0, 80 = 9,0, 80 — 040,48y |

We can show that in this LIF (Locally Inertial Frame):

1. R,, =-R,, (true V connections)

2. Rmv = —Rawv
3. Rmﬂv = Ruvya
4. wav + Rwau + vaa = SRV[OWV] =0

But these equations are tensorial, so they are true in all frames.

These are the symmetries of the Riemann tensor.
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—> the Ricci tensor is symmetric, as a result of the symmetries of the Riemann tensor.

Note:
1. In n spacetime dimensions the number of components of the Riemann tensor
| 1 n=2
is naively n*, but the symmetries make it actually Enz (n2 - 1) =36 n=3
20 n=4

2. These symmetries are only true for a metric connection since we have used the
Christoffel form for the connection.

Once again in an LIF:
VeR s VR s +V R 5, =R
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Substitute R, = E(auaagw +0,0, 80 — 0,0, 8y — 0,008,

Then
VBRyauv + V,LLRWVﬁ + VvRyaﬁu =0
ie. 3VR,,., =0

Again this is a tensorial equation, known as the Bianchi Identity, and is true in all
frames.

Now contract with g™
2> V,R, +V, R s+V R 5 =0
2 VR, +V, R (s—V R;=0
and contract with g%
-2 V'R, +V,R" -V R=0

1
9 Vﬂ |:R,uv — Eg‘uvR:l =0

This is known as the contracted Bianchi Identity.



4.3 Round trips by Parallel Transport
If A" is parallelly transported along a curve then

u
dA L dx?
du du
The change in A" around a closed curve is given by
d.
AA* = ngu =—r* A" ;—udu

Consider a closed curve. x”(0)=0. At some point x” (u).

1. Through a Taylor expansion:

A“(u):A"‘(O)+udA: (0)+
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xP = u(;—:(O) +

> A%(u)=A"(0)-T7 _(0)A"(0)x"(0)+...
2. Through another Taylor expansion:
I 5 (x)=T"5(0)+x"(u)d, ", (0)+
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For a closed curve, the integral Cf)idu =0 and

@x"%ﬁduzgg[j(”ﬁ ﬁax} cﬁxﬂdx
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2> AA" =0 if R*, ;=0 i.e. there is no curvature.
i.e. AA" =0 if space is flat.



