Mistake from first 2 lectures:

$$
\begin{aligned}
& v_{e} d \rightarrow e p p \\
& d+u \rightarrow W^{+} \rightarrow\left(v_{e}+e^{-}, v_{\mu}+\mu^{-}\right)
\end{aligned}
$$

Sudbury ignores the latter muons as they can't distinguish them from cosmic ray muons, hence why this case was earlier considered to just got to muons.

$$
\begin{aligned}
|\psi\rangle & =-\sin \theta e^{-i E_{1} t}\left|v_{1}\right\rangle+\cos \theta e^{-i E_{2} t}\left|v_{2}\right\rangle \\
& =\left(\cos ^{2} \theta e^{i E_{1} t} \ldots\right)\left|v_{\mu}\right\rangle+(\sin \theta \cos \theta \ldots)\left|v_{e}\right\rangle
\end{aligned}
$$

Before, had $v_{\mu}$ and $v_{e}$ the wrong way round.
(Handout 1)
So amplitude for $v_{\alpha} \rightarrow v_{b}=\sum_{i} U_{\alpha i} * \exp \left(-i m_{i}{ }^{2} \frac{L}{2 E}\right) U_{\beta i}$.

## The MSW effect

(Mikheyer-Smirnov-Wolfenstein)
Inside the sun, the $v_{e}$ interact differently from $v_{\mu}$ and $v_{\tau}$.


First is open only to electrons; the latter is open to all neutrinos. This changes the effective mass of eigenstates and leads to an additional factor

$$
\operatorname{Prob}\left(v_{e} \rightarrow v_{\mu}\right)=\frac{\sin ^{2} 2 \theta}{w^{2}} \sin ^{2}\left(1.27 w \Delta m^{2} \frac{L}{E}\right)
$$

where

$$
w^{2}=\sin ^{2} 2 \theta+\left(\sqrt{2} G_{f} N e\left(\frac{2 E}{\Delta m^{2}}\right)-\cos 2 \theta\right)^{2}
$$

$N e$ is the electron density, $G_{f}$ is the Fermi constant.
This could also happen in Earth of course, so SNO looks for a 'day/night' effect in Solar data, i.e. neutrinos must pass through the earth at night. A very slight increase in $v_{e}$ detection at night is observed.

## The state of the art, 2006

- Atmospheric neutrinos: disappearance of $v_{\mu}$

$$
\Delta m_{A}^{2} \approx 3 \times 10^{-3} \mathrm{eV}^{2}
$$

Mixing angle (A denotes atmospheric): $\theta_{A}=\frac{\pi}{4}$. Notice that $\theta_{A}$ is $\sim$ maximal,
i.e. $45^{\circ}$. So atmospheric data implies $v_{\mu} \rightarrow v_{\tau}$ with maximal mixing.

- K2K: $v_{\mu}$ disappear - consistent with atmospheric neutrinos.
- SNO: Total solar $v$ flux correct, but $\sim 1 / 3 v_{e}$. If atmospheric data is correct, remaining $2 / 3$ are $\sim$ equal mixture of $v_{\mu}$ and $v_{\tau}$. 'Large mixing angle MSW' provides the best fit. $\Delta m_{s}{ }^{2} \approx 6 \times 10^{-5} \mathrm{eV}^{2}, \theta_{s} \sim \frac{\pi}{6}$
- Kamland: $\bar{v}_{e}$ disappearing - consistent with the above.

See handout 2.

## The Mixing Matrix

$$
u=\underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right]}_{\text {Atmospheric }} \underbrace{\left[\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right]}_{\text {Solar }} \underbrace{\left[\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right]}_{\text {Cross-mixing }} \underbrace{\left[\begin{array}{ccc}
e^{i \frac{\alpha_{1}}{2}} & 0 & 0 \\
0 & e^{-\frac{\alpha}{2}} & 0 \\
0 & 0 & 1
\end{array}\right]}_{\text {Majorana } \not \subset \text { p phases }}
$$

where $c$ denotes cosine, and $s$ denotes sine.

$$
\begin{gathered}
\theta_{12} \approx \theta_{\text {solar }}=\theta_{\odot}=32^{\circ}, c_{12} \sim \frac{\sqrt{3}}{2}, s_{12} \sim \frac{1}{2} \\
\theta_{23} \approx \theta_{\text {atm }} \approx 45^{\circ}, c_{23} \sim \frac{1}{\sqrt{2}}, s_{23} \sim \frac{1}{\sqrt{2}} \\
\theta_{13} \leq 15^{\circ}\left(\bar{v}_{e} \text { disappearance }\right)
\end{gathered}
$$

It seems to be that muon neutrinos oscillate to tao neutrinos, while electron neutrinos mix to muon neutrinos, and not intermixed.

$$
u=\left(\begin{array}{c}
v_{e} \\
v_{\mu} \\
\tau_{\tau}
\end{array}\right)\left[\begin{array}{ccc}
v_{1} & v_{2} & v_{3} \\
c_{\odot} & s_{\odot} & s_{13} \\
-\frac{s_{\odot}}{\sqrt{2}} & \frac{c_{\odot}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{s_{\odot}}{\sqrt{2}} & -\frac{c_{\odot}}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \sim\left(\begin{array}{ccc}
0.8 & 0.5 & ? \\
0.4 & 0.6 & 0.7 \\
0.4 & 0.6 & 0.7
\end{array}\right)
$$

See handout 3.

## The LSND experiment (Los Alamos)

$\bar{v}_{\mu}$ beam (from $\pi^{+} \rightarrow \mu^{+} v_{\mu}$ etc.)
Detects $\bar{v}_{e}$ by $\bar{v}_{e}+p \rightarrow e^{+}+n$.
Observed $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$ oscillations such that $\Delta m_{L S S D}{ }^{2} \sim 1 e V^{2}$.
BUT: for 3 mass eigenstates there are only 3 possible splittings. $\Delta m_{i j}{ }^{2} \equiv m_{i}{ }^{2}-m_{j}{ }^{2}$, which obviously satisfies the relation $\Delta m_{32}{ }^{2}+\Delta m_{21}{ }^{2}+\Delta m_{13}{ }^{2}=0 . \Delta m_{L S N D}{ }^{2}, \Delta m_{\odot}{ }^{2}$ and $\Delta m_{\text {atm }}{ }^{2}$ do not obey this constraint.

If this result is correct, there must be (at least) 1 more light mass eigenstate. We know that there are only 3 charged leptons $(e, \mu, \tau)$. So there must be a linear combination of the $v_{i}\left(v_{s}\right)$ that does not couple to $W$.
Also, from LEP data, $Z \rightarrow v \bar{v}$ decays only involve 3 distinct $v$ species. So $v_{s}$ does not couple to the Z either., e.g. $v_{s}$ is "sterile" - it does not interact via EM, strong or weak interactions.
This result is controversial, unlike solar and atmospheric results - will be checked by future experiments.

