Mistake from first 2 lectures:

$$v_e d \rightarrow epp$$

 $d + u \rightarrow W^+ \rightarrow \left(v_e + e^-, v_\mu + \mu^-\right)$

Sudbury ignores the latter muons as they can't distinguish them from cosmic ray muons, hence why this case was earlier considered to just got to muons.

$$|\psi\rangle = -\sin\theta e^{-iE_{1}t} |v_{1}\rangle + \cos\theta e^{-iE_{2}t} |v_{2}\rangle$$
$$= (\cos^{2}\theta e^{iE_{1}t}....) |v_{\mu}\rangle + (\sin\theta\cos\theta...) |v_{e}\rangle$$

Before, had v_{μ} and v_{e} the wrong way round.

(Handout 1)

So amplitude for
$$v_{\alpha} \rightarrow v_{b} = \sum_{i} U_{\alpha i} * \exp\left(-im_{i}^{2} \frac{L}{2E}\right) U_{\beta i}$$
.

The MSW effect

(Mikheyer-Smirnov-Wolfenstein) Inside the sun, the v_e interact differently from v_{μ} and v_{τ} .

First is open only to electrons; the latter is open to all neutrinos. This changes the effective mass of eigenstates and leads to an additional factor

$$Prob\left(v_{e} \rightarrow v_{\mu}\right) = \frac{\sin^{2} 2\theta}{w^{2}} \sin^{2}\left(1.27w\Delta m^{2}\frac{L}{E}\right)$$

where

$$w^{2} = \sin^{2} 2\theta + \left(\sqrt{2}G_{f}Ne\left(\frac{2E}{\Delta m^{2}}\right) - \cos 2\theta\right)^{2}$$

Ne is the electron density, G_f is the Fermi constant.

This could also happen in Earth of course, so SNO looks for a 'day/night' effect in Solar data, i.e. neutrinos must pass through the earth at night. A very slight increase in v_e detection at night is observed.

The state of the art, 2006

- Atmospheric neutrinos: disappearance of v_{μ} $\Delta m_A^2 \approx 3 \times 10^{-3} eV^2$

Mixing angle (A denotes atmospheric): $\theta_A = \frac{\pi}{4}$. Notice that θ_A is ~maximal, i.e. 45°. So atmospheric data implies $v_{\mu} \rightarrow v_{\tau}$ with maximal mixing.

- K2K: v_{μ} disappear consistent with atmospheric neutrinos.
- SNO: Total solar v flux correct, but ~ $\frac{1}{3}v_e$. If atmospheric data is correct, - $\frac{2}{3}$ remaining are ~ equal mixture of and v_{μ} V_{τ} . 'Large mixing angle MSW' provides the best fit. $\Delta m_s^2 \approx 6 \times 10^{-5} eV^2$, $\theta_s \sim \frac{\pi}{6}$

- Kamland: \overline{v}_e disappearing – consistent with the above. See handout 2.

The Mixing Matrix

$$u = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} e^{i\frac{\alpha_1}{2}} & 0 & 0 \\ 0 & e^{-\frac{\alpha}{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{Majorana \, \mathcal{C}P \ phases}$$

where c denotes cosine, and s denotes sine.

$$\theta_{12} \approx \theta_{solar} = \theta_{\odot} = 32^{\circ}, \ c_{12} \sim \frac{\sqrt{3}}{2}, \ s_{12} \sim \frac{1}{2}$$
$$\theta_{23} \approx \theta_{atm} \approx 45^{\circ}, \ c_{23} \sim \frac{1}{\sqrt{2}}, \ s_{23} \sim \frac{1}{\sqrt{2}}$$

 $\theta_{13} \leq 15^{\circ} \ (\overline{\nu}_e \text{ disappearance})$

It seems to be that muon neutrinos oscillate to tao neutrinos, while electron neutrinos mix to muon neutrinos, and not intermixed.

$$u = \begin{pmatrix} v_e \\ v_\mu \\ \tau_\tau \end{pmatrix} \begin{vmatrix} v_1 & v_2 & v_3 \\ c_0 & s_0 & s_{13} \\ -\frac{s_0}{\sqrt{2}} & \frac{c_0}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{s_0}{\sqrt{2}} & -\frac{c_0}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{vmatrix} \sim \begin{pmatrix} 0.8 & 0.5 & ? \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$$

See handout 3.

The LSND experiment (Los Alamos)

 \overline{v}_{μ} beam (from $\pi^+ \rightarrow \mu^+ v_{\mu}$ etc.)

Detects \overline{v}_e by $\overline{v}_e + p \rightarrow e^+ + n$.

Observed $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ oscillations such that $\Delta m_{LSND}^{2} \sim 1 eV^{2}$.

BUT: for 3 mass eigenstates there are only 3 possible splittings. $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$, which obviously satisfies the relation $\Delta m_{32}^2 + \Delta m_{21}^2 + \Delta m_{13}^2 = 0$. Δm_{LSND}^2 , Δm_{\odot}^2 and Δm_{atm}^2 do not obey this constraint.

If this result is correct, there must be (at least) 1 more light mass eigenstate. We know that there are only 3 charged leptons (e, μ, τ) . So there must be a linear combination of the v_i (v_s) that does not couple to W.

Also, from LEP data, $Z \rightarrow v\overline{v}$ decays only involve 3 distinct v species. So v_s does not couple to the Z either., e.g. v_s is "sterile" – it does not interact via EM, strong or weak interactions.

This result is controversial, unlike solar and atmospheric results – will be checked by future experiments.