Lecturer: Brian Cox
[There are handouts... hopefully available on the net?]

$$
\binom{e}{v_{e}}\binom{\mu}{v_{\mu}}\binom{\tau}{v_{\tau}}
$$

- There are 10^{9} remnant v / m^{3} from the big bang
- There are $10^{15} m^{-3} s^{-1}$ from the Sun at the Earth's surface from the reaction $p+p \rightarrow D+e^{+}+v_{e}, E_{v}=0-0.42 \mathrm{MeV}$, and $10^{11} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ from ${ }^{8} B \rightarrow 2 \mathrm{He}+e^{+}+v_{e}, E_{v}=0 \rightarrow 14.6 \mathrm{MeV}$
- There are e and μ neutrinos from cosmic rays

Detecting Neutrinos

The Sudbury Neutrino Observatory (SNO)

- $v_{e}+D \rightarrow e+p+p$
$D=$ Deuteron $=n+p$.
"Charge current" - sensitive only to v_{e}. Flux $\phi_{e} \approx 30 /$ day (predicted)
- $v_{e}+e \rightarrow v_{e}+e$
"Electron scattering", sensitive to $\phi_{e}+0.15 \phi_{\mu, \tau}$
Flux ~ 3 per day (predicted)
- $\quad v+d \rightarrow v+n+p$
"Neutral current", sensitive to $\phi_{e}+\phi_{\mu, \tau}$
Flux ~ 30 per day (predicted)
The weak interaction is weak. For a $100 \mathrm{GeV} v$, the mean free path in iron is $3 \times 10^{9} \mathrm{~m}$. But the cross section increases with energy. For $10^{8} \mathrm{GeV} v$, the earth is opaque.

The sun only produces v_{e}. SNO measures $\phi_{\mu, \tau}=\left(3.41_{-0.64}^{+0.66}\right) \times 10^{6} \mathrm{~cm}^{-2} s^{-1}$, coming from the sun, even though we know that there are none produced. So clearly there are v_{μ}, v_{τ} reaching the Earth from the sun.
The standard solar model (SSM) predicts: $\phi_{S M}=\left(5.05_{-0.81}^{+1.01}\right) \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$.
SNO measures from $v+d \rightarrow v+n+p, \phi_{e, \mu, \tau}=\left(5.09_{-0.61}^{+0.64}\right) \times 10^{6} \mathrm{~cm}^{-2} s^{-1}$.
The total v flux agrees with SSM, but $\frac{\phi_{e}}{\left(\phi_{e}+\phi_{\mu, \tau}\right)} \approx \frac{1}{3}$. i.e. more than half of the v_{e} flux created in the solar core changes flavour on their way to Earth.

Super Kamiokande

Atmospheric v are decay products of π (and K) mesons created in interactions of cosmic rays in the upper atmosphere.
$\pi^{ \pm} \rightarrow \mu^{ \pm}+v_{\mu}\left(\overline{v_{\mu}}\right) ; \mu^{ \pm} \rightarrow e^{ \pm}+\overline{v_{e}}\left(v_{e}\right)+v_{\mu}\left(\overline{v_{\mu}}\right)$

So you expect $\frac{v_{\mu}}{v_{e}} \sim 2$. The key result:

$$
\frac{\phi_{\mu}(u p)(-1.0<\cos \theta<-0.2)}{\phi_{\mu}(\text { down })(+0.2<\cos \theta<1.0)}=0.54 \pm 0.045
$$

- Given that cosmic rays are isotropic, v_{μ} must be disappearing on their way through the earth.
- Note also that they appear not to be turning into $v_{e}\left(v_{\tau}\right.$ are very difficult to see).

K2K

Pure v_{μ} produced at KEK (12 GeV proton accelerator).

$$
\begin{aligned}
& L=250 \mathrm{~km}, E=1.3 \mathrm{GeV} \\
& \qquad \sin ^{2}\left(1.27 \Delta_{\text {matm }}^{2}\left(e v^{2}\right) \frac{L(\mathrm{~km}) E(\mathrm{GeV})}{}\right) \sim \frac{1}{3}
\end{aligned}
$$

Observed 108 events in SK (expected 150).
$\rightarrow \Delta m_{k 2 k}^{2} \sim 3 \times 10^{-3} \mathrm{eV},\left(\sin ^{2} 2 \theta\right)_{k 2 k}=1.0$

KamLAND

$\sim 180 \mathrm{~km}$ from reactor $\overline{v_{e}}$ sources.

$$
\frac{\phi_{\overline{v_{e}}}}{\phi_{\overline{v_{e}}}(\text { expected })}=0.686 \pm 0.044(\text { stat }) \pm 0.045(\text { syst })
$$

Reactor $\overline{v_{e}}$ disappear!

Theory

Flavour eigenstates are not necessarily mass eigenstates. Neutrinos are produced in a state of definite flavour, but they propagate through space as states of finite mass (mass eigenstates).

$$
\left|v_{\alpha}\right\rangle=\sum_{i} u_{\alpha i} *\left|v_{i}\right\rangle
$$

where v_{α} is a neutrino of definite flavour, and v_{i} is a neutrino of definite mass m_{i}. There are at least three neutrino states of definite, increasing mass -there could be more.

Inversely,

$$
\left|v_{i}\right\rangle=\sum_{\alpha} u_{\alpha i}\left|v_{\alpha}\right\rangle
$$

u is the leptonic mixing matrix. It is unitary (i.e total number of v is conserved).

Creation

Detection

Only the v_{β} component contributes:
An e is made by a v_{e}
A μ is made by a v_{μ}
A τ is made by a ν_{τ}
Flavour \propto fraction of v_{i} is $\left|\left\langle v_{\alpha} \mid v_{i}\right\rangle\right|^{2}=\left|u_{\alpha i}\right|^{2}$.
For simplicity, consider 2 neutrino species.

$$
\begin{aligned}
& \binom{v_{e}}{v_{\mu}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{v_{1}}{v_{2}} \\
& \binom{v_{1}}{v_{2}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{v_{e}}{v_{\mu}}
\end{aligned}
$$

At creation $(t=0)$,

$$
\left|v_{\mu}\right\rangle=-\sin \theta\left|v_{1}\right\rangle+\cos \theta\left|v_{2}\right\rangle
$$

At later time t (using $i \frac{d}{d t}\left|v_{1}\right\rangle=H_{0}\left|v_{1}\right\rangle=E_{1}\left|v_{1}\right\rangle$, where $\hbar=c=1$),

$$
\begin{aligned}
|\psi\rangle & =-\sin \theta e^{-i E_{1} t}\left|v_{1}\right\rangle+\cos \theta e^{-i E_{2} t}\left|v_{2}\right\rangle \\
& =\left(\cos ^{2} \theta e^{-i E_{1} t}+\sin ^{2} \theta e^{-i E_{2} t}\right)\left|v_{e}\right\rangle+\sin \theta \cos \theta\left(e^{-i E_{2} t}-e^{-i E_{1} t}\right)\left|v_{\mu}\right\rangle
\end{aligned}
$$

through substitution for $\left|v_{1}\right\rangle$ and $\left|v_{2}\right\rangle$.
The probability to oscillate into $\left|v_{e}\right\rangle$ is

$$
\begin{aligned}
P_{\text {osc }} & =\left|\left\langle v_{e} \mid \psi_{(t)}\right\rangle\right|^{2} \\
& =\frac{1}{2} \sin ^{2} 2 \theta\left[1-\cos \left(E_{2}-E_{1}\right) t\right]
\end{aligned}
$$

Use $E_{1}=\sqrt{p^{2}+m_{1}{ }^{2}} \approx p+\frac{m_{1}{ }^{2}}{2 p}$ and $\frac{t}{p}=\frac{t c}{p c}=\frac{L}{E}$

$$
\begin{aligned}
P & \approx \frac{1}{2} \sin ^{2} 2 \theta\left(1-\cos \left(\frac{\left(m_{2}^{2}-m_{1}^{2}\right) L}{E}\right)\right) \\
& =\sin ^{2} 2 \theta \sin ^{2}\left(1.27 \Delta m^{2} \frac{L}{E}\right)
\end{aligned}
$$

where the constant 1.27 comes from recovering from $c=\hbar=1$.

The Vacuum Oscillation Formula

$$
P=\sin ^{2} 2 \theta \sin ^{2}\left(1.27 \Delta m^{2} \frac{L}{E}\right)
$$

$\frac{L}{E}$ is the time elapsed in the neutrino's rest frame during the journey.
This depends on 2 experimental parameters:

- $\quad L$ - the distance from the source to the detector (km)
- E - the energy of the neutrino (GeV)
and 2 fundamental parameters
- $\Delta m^{2}=m_{1}{ }^{2}-m_{2}{ }^{2}\left(e v^{2}\right)$
- $\sin ^{2} 2 \theta$
(See K2K figure)
In words;
As the neutrino travels from source to detector the mass eigenstate components propagate with different frequencies because the masses are different. So a v_{e} need not necessarily stay as a v_{e} because the components that make it up 'shift' during the journey.

