Lecturer: Brian Cox

[There are handouts... hopefully available on the net?]

$$\begin{pmatrix} e \\ v_e \end{pmatrix} \begin{pmatrix} \mu \\ v_\mu \end{pmatrix} \begin{pmatrix} \tau \\ v_\tau \end{pmatrix}$$

- There are 10^9 remnant v/m^3 from the big bang
- There are $10^{15} m^{-3} s^{-1}$ from the Sun at the Earth's surface from the reaction $p + p \rightarrow D + e^+ + v_e$, $E_v = 0 0.42 MeV$,

and $10^{11}m^{-2}s^{-1}$ from ${}^{8}B \rightarrow 2He + e^{+} + v_{e}$, $E_{v} = 0 \rightarrow 14.6MeV$

- There are e and μ neutrinos from cosmic rays

Detecting Neutrinos

The Sudbury Neutrino Observatory (SNO)

- $v_e + D \rightarrow e + p + p$ D = Deuteron = n + p. "Charge current" – sensitive only to v_e . Flux $\phi_e \approx 30$ / day (predicted)
- $v_e + e \rightarrow v_e + e$ "Electron scattering", sensitive to $\phi_e + 0.15\phi_{\mu,\tau}$ Flux ~ 3 per day (predicted)
- $v + d \rightarrow v + n + p$ "Neutral current", sensitive to $\phi_e + \phi_{\mu,\tau}$ Flux ~ 30 per day (predicted)

The weak interaction is weak. For a 100 GeV v, the mean free path in iron is $3 \times 10^9 m$. But the cross section increases with energy. For $10^8 GeV v$, the earth is opaque.

The sun only produces v_e . SNO measures $\phi_{\mu,\tau} = (3.41^{+0.66}_{-0.64}) \times 10^6 \, cm^{-2} s^{-1}$, coming from the sun, even though we know that there are none produced. So clearly there are v_{μ}, v_{τ} reaching the Earth from the sun.

The standard solar model (SSM) predicts: $\phi_{SM} = (5.05^{+1.01}_{-0.81}) \times 10^6 \, cm^{-2} \, s^{-1}$. SNO measures from $v + d \rightarrow v + n + p$, $\phi_{e,\mu,\tau} = (5.09^{+0.64}_{-0.61}) \times 10^6 \, cm^{-2} \, s^{-1}$. The total v flux agrees with SSM, but $\frac{\phi_e}{(\phi_e + \phi_{\mu,\tau})} \approx \frac{1}{3}$. i.e. more than half of the v_e

flux created in the solar core changes flavour on their way to Earth.

Super Kamiokande

Atmospheric v are decay products of π (and K) mesons created in interactions of cosmic rays in the upper atmosphere.

$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu} \left(\overline{\nu_{\mu}} \right); \ \mu^{\pm} \to e^{\pm} + \overline{\nu_{e}} \left(\nu_{e} \right) + \nu_{\mu} \left(\overline{\nu_{\mu}} \right)$$

So you expect $\frac{V_{\mu}}{V_{e}} \sim 2$. The key result:

$$\frac{\phi_{\mu}(up)(-1.0 < \cos\theta < -0.2)}{\phi_{\mu}(down)(+0.2 < \cos\theta < 1.0)} = 0.54 \pm 0.045$$

- Given that cosmic rays are isotropic, v_{μ} must be disappearing on their way through the earth.
- Note also that they appear not to be turning into v_e (v_{τ} are very difficult to see).

<u>K2K</u>

Pure v_{μ} produced at KEK (12GeV proton accelerator).

$$L = 250 km$$
, $E = 1.3 GeV$

$$\sin^2\left(1.27\Delta_{matm}^2\left(ev^2\right)\frac{L(km)E(GeV)}{2}\right) \sim \frac{1}{3}$$

Observed 108 events in SK (expected 150).

$$\Rightarrow \Delta m_{k2k}^2 \sim 3 \times 10^{-3} eV, \left(\sin^2 2\theta\right)_{k2k} = 1.0$$

KamLAND

~180km from reactor $\overline{v_e}$ sources.

$$\frac{\phi_{\overline{v_e}}}{\phi_{\overline{v_e}}(expected)} = 0.686 \pm 0.044(stat) \pm 0.045(syst)$$

Reactor $\overline{v_e}$ disappear!

Theory

Flavour eigenstates are not necessarily mass eigenstates. Neutrinos are produced in a state of definite flavour, but they propagate through space as states of finite mass (mass eigenstates).

$$\left|\boldsymbol{v}_{\alpha}\right\rangle = \sum_{i} u_{\alpha i} * \left|\boldsymbol{v}_{i}\right\rangle$$

where v_{α} is a neutrino of definite flavour, and v_i is a neutrino of definite mass m_i . There are at least three neutrino states of definite, increasing mass –there could be more.

Inversely,

$$\left|\boldsymbol{v}_{i}\right\rangle = \sum_{\alpha} u_{\alpha i} \left|\boldsymbol{v}_{\alpha}\right\rangle$$

u is the leptonic mixing matrix. It is unitary (i.e. total number of v is conserved).

Creation

they add up to flavour α

Detection

Only the v_{β} component contributes:

- An *e* is made by a v_e
- A μ is made by a v_{μ}

A τ is made by a v_{τ}

Flavour \propto fraction of v_i is $|\langle v_{\alpha} | v_i \rangle|^2 = |u_{\alpha i}|^2$. For simplicity, consider 2 neutrino species.

$$\begin{pmatrix} v_e \\ v_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_e \\ v_\mu \end{pmatrix}$$

At creation (t = 0),

$$|v_{\mu}\rangle = -\sin\theta |v_{1}\rangle + \cos\theta |v_{2}\rangle$$

At later time t (using $i \frac{d}{dt} |v_1\rangle = H_0 |v_1\rangle = E_1 |v_1\rangle$, where $\hbar = c = 1$), $|\psi\rangle = -\sin\theta e^{-iE_1 t} |v_1\rangle + \cos\theta e^{-iE_2 t} |v_2\rangle$ $= (\cos^2\theta e^{-iE_1 t} + \sin^2\theta e^{-iE_2 t}) |v_e\rangle + \sin\theta\cos\theta (e^{-iE_2 t} - e^{-iE_1 t}) |v_{\mu}\rangle$

through substitution for $|v_1\rangle$ and $|v_2\rangle$.

The probability to oscillate into $|v_e\rangle$ is

$$P_{osc} = \left| \left\langle \mathbf{v}_{e} \left| \boldsymbol{\psi}_{(t)} \right\rangle \right|^{2}$$
$$= \frac{1}{2} \sin^{2} 2\theta \Big[1 - \cos \left(E_{2} - E_{1} \right) t \Big]$$
Use $E_{1} = \sqrt{p^{2} + m_{1}^{2}} \approx p + \frac{m_{1}^{2}}{2p}$ and $\frac{t}{p} = \frac{tc}{pc} = \frac{L}{E}$
$$P \approx \frac{1}{2} \sin^{2} 2\theta \Big[1 - \cos \left(\frac{\left(m_{2}^{2} - m_{1}^{2} \right) L}{E} \right) \Big]$$
$$= \sin^{2} 2\theta \sin^{2} \Big(1.27 \Delta m^{2} \frac{L}{E} \Big)$$

where the constant 1.27 comes from recovering from $c = \hbar = 1$.

The Vacuum Oscillation Formula

$$P = \sin^2 2\theta \sin^2 \left(1.27 \Delta m^2 \frac{L}{E} \right)$$

 $\frac{L}{E}$ is the time elapsed in the neutrino's rest frame during the journey.

This depends on 2 experimental parameters:

- L the distance from the source to the detector (km)
- E the energy of the neutrino (GeV)

and 2 fundamental parameters

-
$$\Delta m^2 = m_1^2 - m_2^2 (ev^2)$$

- $\sin^2 2\theta$
(See K2K figure)

In words;

As the neutrino travels from source to detector the mass eigenstate components propagate with different frequencies because the masses are different. So a v_e need not necessarily stay as a v_e because the components that make it up 'shift' during the journey.