PC4691 – Frontiers of Astrophysics – Interstellar Dust

Lectures 9&10 Lecturer: Dr. M. Gray

Grains in Cosmic History

- AGB stars are typically very old $(10^{10} yr)$.
- Where did grains come from in the early universe?
- The obvious source is supernovae
- No agreement that SN are even a net source at current epoch
- Evolutionary models show that they must have been in the early universe

Observations of Dust in Supernovae

- Observations of SN1987A at 10 microns
 - Dust forms after only 460 days
 - $\circ~~0.23 M_{\odot}$ formed between 460 & 730 days
- Bolometric observations of young remnants with SCUBA
 - Remnants centuries old: cold dust 400, 800 μm .
 - $\circ~$ So far, good results for Kepler (~500 years old), Cas. A (~a few thousand years old)
 - Derived dust mass of $2-5M_{\odot}$ in Kepler.

Dust Processing

- Accretion, Sputtering, Heating, Collisions
- Single particle collisions give accretion or sputtering
- Most colliding particles will be *H*, *He* and *e*.
- Important parameter: surface energy (7.4eV for C_{gr} graphite [an organized carbon molecule])
- Particles with $E < E_{surf}$ won't sputter
- Cold clouds (< 5000K) have no thermal sputtering
- Non-thermal sputtering mostly in shockwaves.

Heating and Cooling

- Cooling by thermal radiation (in IR, mm, sub-mm)
- Heating by starlight, X-rays and cosmic rays, chemistry
- If heating dominated by radiation, energy density $U(\lambda)$, then in the steady state the heating rate equals the cooling rate.
- $c\int_0^\infty Q(\lambda)U(\lambda)d\lambda = 4\pi\int_0^\infty Q(\lambda)B(\lambda,T^{dust})d\lambda$
- $Q(\lambda)$ is the efficiency.
- Dust temperature, T_{dust} , from solution of integral equation
- Heating term for cosmic rays has the same form
- Additional (different) terms for gas particles, etc.

Accretion Rate

• For one projectile species, j, at one speed, v_i

•
$$\left(\frac{dM}{dt}\right)_{j,v_j} = n_j m_j v_j \sigma(M) S_{v_j} f(v_j) dv_j$$

- S is the "sticking probability".
- One species at all speeds and angles
- $\left(\frac{dM}{dt}\right)_j = n_j m_j \oint \int_0^\infty v_j \sigma(M, v_j) S_{v_j} f(v_j) dv_j d\Omega$
- Spherical grain $\sigma(M, v_j) = \pi b^2(v_j)$, and Maxwellian speeds

$$f(v_j) = \left(\frac{m_j}{2\pi kT}\right)^{\frac{N}{2}} e^{-\frac{m_j v_j^2}{2kT}} v_j^2 \sin\theta$$

•
$$\frac{dM}{dt} = \sum_{j=1}^{J} 4\pi^2 n_j m_j \left(\frac{m_j}{2\pi kT}\right)^{3/2} \int_0^\infty v_j^3 e^{-\frac{m_j v_j^2}{2kT}} b^2(v_j) S(v_j) dv_j$$

Low energy regime

- Important parameter: surface energy $\gamma \left(\gamma_{C_{rr}} \sim 7.4 eV \right)$
 - About the energy needed to eject an atom from the surface
- Projectiles with $E < \gamma$ won't sputter
- All cold clouds (< 5000k) have no thermal sputtering
- Shock and cosmic ray sputtering
- Thermal and thermochemical absorption
 - These two points are the main erosion processes in cold material
- Accretion only regime

Theory

 Fully QM theory by Leitch-Devlin M.A. & Williams D.A., Royal Astronomical Society, Monthly Notices, vol. 213, March 15, 1985, p. 295– 306.

Calculate S(E) - sticking probability

Projectile energy released to gain free states. Lattice phonon $\hbar k = E_i - E_f$

• 4 lattices C_g , SiO_2 , C_{gr} and H_2O layer, MgO

- $S \uparrow$ for soft lattice, chemisorbed projectile
- Peak *S* typically at around $20 \rightarrow 50k$
- $S \uparrow$ as $T_{gr} \uparrow$ (higher T_{gr} gives richer photon spectrum)
- Typical curve shape.

Sputtering

- Sputtering tends to replace grain atoms with projectiles
- Typical yields rarely > 100%, but *H*, *He* can diffuse out
- Sputtering in SFR outflows: non-thermal
- Sputtering in SNR shocks: mostly thermal
- In ISM, grains are slowly eroded
- SNR gas is metal enriched: may be net embedding
- Tendency to embed is enhanced by organic mantle.

Higher Energy Collisions

• When significant number of projectiles have $E > \gamma$, the projectiles can penetrate the grain. There are three regimes:

- Heavy ions cause localized spikes near surface give up their energy quickly.
- Tielens (1997) obtains a "universal sputtering law"

$$\gamma(E) = \frac{4.2 \times 10^{14}}{\gamma} \alpha \sigma_N(E) \text{ atoms } (ion)^{-1}$$

where $\sigma_N(E)$ is the nuclear stopping cross-section in $erg \, cm^{-2}$ $\alpha \sigma_N(E)$ determines the deposited energy.

$$\alpha = 0.3 \left(\frac{M_{t \arg et}}{M_{projectile}} \right)^{2/3}$$

- Ignores electron stopping convection near γ
- Ignores grain sizes transmission loss
- Much work only uses $\theta = 0$.

Grain-Grain Collisions

- Almost certainly accumulative if $v_{rel} < c_o$ v_{rel} is the relative velocity in the collisions, c_o is the sound speed in the mineral.
- Thermal speed of grain

$$v_{th} \sim 1.6 \left(\frac{T_{100}}{N_H}\right)^{1/2} km s^{-1}$$

 T_{100} is the temperature in units of 100k. N_H is the total number of protons or neutrons in the grain.

- Typical molecular cloud grains (the coldest part of the ISM) have $v_{th} \ll 1 km s^{-1}$.
- Shattering velocities $(> c_o)$ for common dust materials:

Material	C _o	Catastrophic Destruction
$C_{_{graph}}$	$1.2 km s^{-1}$	$75 km s^{-1}$
H_2O_{ice}	$1.8 km s^{-1}$	$115 km s^{-1}$
Typical silicate grain		Between these
SiC	$8.8 km s^{-1}$	$560 km s^{-1}$
$C_{diamond}$	$16.1 km s^{-1}$	$1000 km s^{-1}$

- Conclusion: there is no shattering in molecular clouds.
- Upper size limit set by cloud lifetime ~ growth time for largest grains: sets $a_{\text{max}} \sim 100 \,\mu m$.
- Only collapse and star formation $(T \uparrow, n \uparrow)$ can allow growth towards planetessimal size.

Fragmenting Collisions

• $v_{rel} > c_o$

If this leads to a cracking of the crystal structure, then the whole grain may fragment.

- 1. Shock waves propagate into both projectile and target generates high pressures
- 2. Shock reaches free surfaces of target:- rarefraction waves travel back into the shocked region, which will relieve the high pressure.
 - Phase changes may follow
 - Target may shatter.
- Tielens et. al. (1994) obtain a semi-empirical formula for the mass compressed to a given normalized pressure. $\phi_1 = \frac{p_1}{\rho_0 c_0^2}$, corresponding to Mach number

```
М
```

$$\frac{M}{m_{proj}} = \frac{1 + 2R(v_s)}{2(1+R)^{16/9}} \frac{1}{\sigma_2^{1/9} \sigma_1^{8/9}} \left(\frac{M_0^2}{M_1^2}\right)^{8/9}$$

 M_0 - impact Mach number.

 M_1 - final Mach number.

 σ_1, σ_2 - parameters of order unity

["AGGM Tielens" – Figure 2: schematic P, V diagram of a realistic material. With increasing strength of the shock wave ...]

- Shock compression can induce many phase transitions
- Isentropic expansion behind shock generates more.
- Any isentrope arriving at $P > P_{crit}$ produces only vapour.
- Partial vapourization needs ~ 2 x binding energy. Complete vapourization requires ~ 3 x binding energy.
 For a typical silicate, E_{bind} ~ 1.7×10¹¹ erg g⁻¹.

Fragmenting collisions – continued

- For many materials, the relation between shock velocity and the velocity of the shocked material is unclear. $v_{shock} \sim c_o + sv_1$
- The jump condition, $\frac{v_1}{v_s} = \frac{P_1}{\rho_0 v_s^2}$ then gives a relation between ϕ_1 and M_1 :

$$M_{1} = \frac{2\phi_{1}}{1 + (1 + 4S\phi_{1})^{\frac{1}{2}}} \text{ vs. } M_{1} = \frac{v_{1}}{c_{o}}$$

- The parameter *R* is $R = \left(\frac{s\rho_0}{s_{proj}\rho_{0,proj}}\right)$.
- The shock is somewhere between an energy conserving vs. a momentum conserving blast-wave.

 $r \propto t^{\eta} := \eta$ between 2/5 and 1/4.

This is not the same as R as before – it is the expansion radius.

• Energy coupled to target

$$E = \frac{1}{2}m_{proj}v_{rel}^{2}\frac{1+2R}{(1+R)^{2}}$$

Most efficient deposition of energy for density target material.

- Peak pressure on collision axis ~ constant over ~ projectile size, and then decays rapidly with distance negligible after ~ $3a_{proj}$.
- Shattering effects dominated by high energy impacts of small grains.