PC4691 – Frontiers of Astrophysics – Interstellar Dust

Lectures 9&10 Lecturer: Dr. M. Gray

Dust: An Overview

- Observations: extinction, reddening, (infra-red) features, polarization.
- Models: size distribution, composition, efficiencies
- Source of dust: Asymptotic Giant Branch (AGB) stars, Wolf-Reyat (?) (WR) stars, novae, SN, cool dwarfs
- Processing: accretion/spluttering, irradiation, collisions
- Dust and Chemistry: surface processes, reactions
- Formation and Destruction processes
- Dust in Protoplanetary Systems

Classical (optical, early 20th century) observations: Extinction

- Makes stars appear fainter (more distant) than they are
- Damaged some early 20th century surveys (e.g. Kapteyn's)
- Extinction is the sum of absorption and scattering
 - $Q_{ext} = Q_{abs} + Q_{scat}$

Absorption involves the destruction of the photon, so there is an increase in the energy of the grain, while scattering just redirects the photon.

- Usually measured in magnitudes: continuum effect extinction across the whole of the optical spectrum, and into the UV and IR.
- Patchy: largest extinctions near Galactic plane
- Association with young (Popular 1: O and proto-) stellar objects

Classical observations: Reddening

• Extinction varies with wavelength: blue light is more extincted than red.

• Often expressed as
$$R = \frac{A_v}{E(B-V)}$$

Bottom is the excess of blue compared to violet light.

- *R* is typically 3.1 in the Milky Way.
- Some dependence on direction, e.g. towards the bulge.
- Lower *R* implies smaller grain populations.
- Plot $\frac{E(\lambda V)}{E(B V)}$ (the excess at a particular wavelength) to get the "Reddening

Law".

• Don't extend classical formulae to IR colours or dark clouds.

Contributions to Reddening Law

- Different species have characteristic extinction behaviour
- Observed reddening law allows us to identify species responsible. Note that electrons have been included as a control.
 Mia scattering is a more complicated case there is contribution from many.

Mie scattering is a more complicated case – there is contribution from many different poles, rather than just the usual dipole.

Species	Law	Cross Section σ	Scattering Type
Electrons	λ^{0}	σ_{T}	Thomson Scattering
Molecules	λ^{-4}	$\sim \pi a^2$	Rayleigh Scattering
Grains: $a \ll \lambda$	λ^{-4}	$<<\pi a^2$	Rayleigh Scattering
Grains: $a >> \lambda$	λ^{0}	πa^2	Geometrical optics
Grains: $a \sim \lambda$	λ^{-1}	$Q_{ext}\pi a^2$	Mie scattering

• Most heavy elements must be in grains, rather than in the gas phase, to get observed extinctions – unless the grains have an extremely fractal structure, so that you get a large area for comparatively little mass.

Classical Observations: Polarization

- Spherical grains will not display polarization; hence as we observe a lot of polarization, they must be aspherical.
- Aspherical charged grains align with B field; they align so that the B field goes through the least amount of matter (i.e. vertical field, long axis of molecule will be horizontal)
- Grains rotate: short axis parallel to *B*.
- Strong polarization if line of sight is perpendicular to *B*.
- Weak, random polarization if the line of sign is parallel to *B*.

• Spin-up time
$$\tau_{spin} \sim \frac{\pi a \rho}{m_H n_H V_g}$$

 v_{g} is the grain thermal velocity; ρ is the mineral density.

• Typical τ_{spin} is 10^7 years.

• Polarization
$$P = \frac{[Q_{ext}]_H - [Q_{ext}]_E}{[Q_{ext}]_H + [Q_{ext}]_E}$$

Modern Observations (looking in non-optical regions of the spectrum)

- Radio, mm and sub-mm (only in the last few decades, in places such as the Rayleign telescope in Hawaii): Rayleigh Law continuum
- Cold dust observations in supernovae (SCUBA, JCMT) odd because most of a supernova will be very hot, but the ejecta can be very cold.
- Infra-Red: many molecular line-like features, which are important as they tell you what is in / on the grain.
- Features correspond to bond vibrations: no rotation in lattices
- Give information about mineral content of grains
- Problem: features are broader than molecular equivalents: lattice.

Grain Models

- Often assume spherical grains, radius a
- A size spectrum is assumed: often a power-law e.g. $dn(a) = Kn_H a^\beta da$

K is a normalization constant; n_H is the number density of hydrogen nuclei.

- A well-used value for β is -3.5, from MRN (a classic dust-modelling paper)
- The size spectrum can be used to compute other quantities.

Total Mass in Grains

• Mass density of grains
$$m = \frac{4}{3}\pi\rho a^3 n(a)$$

• Chain rule:
$$\frac{dm}{da} = \frac{dm}{dn}\frac{dn}{da}$$

• Substitute
$$\frac{dm}{da} = \frac{4}{3}\pi\rho a^3 \frac{dn}{da}$$

• Use size spectrum:
$$\frac{dm}{da} = \frac{4}{3}\pi\rho K n_H a^{3+\beta}$$

• Integrate:
$$m = \frac{4\pi\rho K n_H}{3} \int_{a_{\min}}^{a_{\max}} a^{3+\beta} da$$

A typical a_{max} would be around 1-10 microns. A typical a_{min} would be around a nanometer.

•
$$m = \frac{4\pi\rho K n_H}{3(4+\beta)} \left[a_{\max}^{4+\beta} - a_{\min}^{4+\beta} \right]$$

Mean Grain Radius

•
$$\langle a \rangle = \frac{\int_{a_{\min}}^{a_{\max}} a \frac{dn}{da} da}{\int_{a_{\min}}^{a_{\max}} \frac{dn}{da} da}$$

• Use size spectrum:
$$\langle a \rangle = \frac{\int_{a_{\min}}^{a_{\max}} a^{1+\beta} da}{\int_{a_{\min}}^{a_{\max}} a^{\beta} da}$$

• Integrate:
$$\langle a \rangle = \frac{1 + \beta \left[a_{\max}^{2+\beta} - a_{\min}^{2+\beta} \right]}{2 + \beta \left[a_{\max}^{1+\beta} - a_{\min}^{1+\beta} \right]}$$

• A typical mean radius is 0.05 microns.

Efficiencies, Q

- Generally obtained from Mie Theory: complicated.
- If $x = 2\pi \frac{a}{\lambda}$, Rayleigh limit forms are:

•
$$Q_{scat} = \frac{8x^4}{3} \Re\left\{ \left(\frac{n^2 - 1}{n^2 + 1} \right)^2 \right\}$$

NB: \Re means take the real component

 $Q_{abs} = -4x \operatorname{Im}\left\{\frac{n^2 - 1}{n^2 + 2}\right\}$ •

NB: Im means take the Imaginary component.

- *n* is the complex refractive index, n = n' in''. The minus sign is a convention to make the math easier.
- Note: dielectric constant is often used instead of the refractive index: $\varepsilon = \varepsilon' + i\varepsilon''$

$$\varepsilon' = (n')^2 - (n'')^2$$
$$\varepsilon'' = 2n'n''$$

Points to Note:

- As $x \to \infty$, Q_{abs} and $Q_{scat} \to 1$ BUT: $Q_{ext} \to 2$: diffraction pattern.
- Optical efficiency for radiation pressure has $Q_P = Q_{ext} Q_{scat} \langle \cos \theta \rangle$
- For a particular scattering pattern, $S(\theta)$,

$$\langle \cos \theta \rangle = \frac{\int_0^{\pi} S(\theta) \cos \theta \sin \theta d\theta}{\int_0^{\pi} S(\theta) \sin \theta d\theta}$$

- Effect on wave: $A = A_0 e^{i(\omega t kxn')} e^{-kn''x}$
- Note: real part of n gives refraction; imaginary part gives absorption.

Absorption (Scattering) Coefficient

- Absorbing area per unit volume: $\kappa(\lambda) = \pi a^2 Q(a, \lambda) n(a)$
- Chain rule: $\frac{d\kappa}{da} = \frac{d\kappa}{dn}\frac{dn}{da}$

• Substitute:
$$\frac{d\kappa}{da} = \pi a^2 Q(a,\lambda) \frac{dn}{da}$$

• Use size spectrum: $\frac{d\kappa}{da} = \pi K n_H Q(a, \lambda) a^{2+\beta}$

• Integrate:
$$\kappa(\lambda) = \pi K n_H \int_{a_{\min}}^{a_{\max}} Q(a,\lambda) a^{2+\beta} daw$$

• Evaluation requires full knowledge of size-dependence of Q.

Greenberg's Composite Model

- Attempts to match extinction law AND polarization
- Three dust components:
 - i. PAHs for rise in far UV extinction
 - ii. Small carbonaceous grains for 'UV bump'
 - iii. Larger (carbonaceous-)coated silicates (cores) for polarization and optical extinction. These can also have an ice mantel, which can also turn into (ii).
- Fragments of coating of (iii) form component (ii).
- Number density of (iii):

$$n(a) = Nn_{H}e^{-5\left(\frac{a-a_{c}}{a_{m}}\right)}$$

for core radius a_c and turn-over radius a_m .

Greenberg or "gobstopper' model

- 1. Starts off with a silicate core from CSE. Cooling in diffuse clouds $\rightarrow 2$
- Mantle formed by accretion of simple molecules. Cooling in molecular clouds → 3

- Outer mantle of ices forms.
 Protostellar collapse → destruction? Growth to form comets, planitessimals?
 Ejection to hot or warm ISM → 4
- 4. Tough mantle of refractory organic material. UV processing of mantle \rightarrow 2 (on top of previous layers).
- Track through ISM is important for layer sequence.
- Needs Mie theory for multiple coatings.

Sources of Grains

Estimated stellar / explosive contributions:

- O-rich AGB stars: $3.7 \times 10^{-3} M_{\odot} pc^{-2} Gyr^{-1}$; silicates
- C-rich AGB stars: $2.8 \times 10^{-3} M_{\odot} pc^{-2} Gyr^{-1}$: C, SiC
- Wolf-Rayet stars: $2 \times 10^{-4} M_{\odot} pc^{-2} Gyr^{-1}$; mostly C (each star forms a lot, but they're rare objects)
- Novae: $3 \times 10^{-6} M_{\odot} p c^{-2} Gyr^{-1}$; C
- Type II SN: $7.0 \times 10^{-3} M_{\odot} pc^{-2} Gyr^{-1}$ of silicates and $1.5 \times 10^{-3} M_{\odot} pc^{-2} Gyr^{-1}$ of C.

(NB: they probably destroy a comparable amount of grains as well)