3.7 Particles in a Spherical Potential

Compare with the TIDE.

$$
\begin{equation*}
[-i \underline{\alpha} \cdot \underline{\nabla}+\beta(m+S(r))+V(r)] \psi=E \psi \tag{1}
\end{equation*}
$$

where $S(r), V(r)=q A^{0}(r)$ depend on $r=|x|$ only.
Consider solutions with $j=\frac{1}{2}, P=+1-S_{1 / 2}$ particles (or antiparticles in $P_{1 / 2}$). The wave function in Dirac representation have the form

$$
\psi(r)=\binom{f(r) \chi_{S}}{g(r) i \underline{\sigma} \cdot \hat{r} \chi_{S}}
$$

where the top one is large for positive energy at low-energies, and the bottom one is large otherwise. $f(r)$ and $g(r)$ are scalar functions, and $\underline{\sigma} \cdot \underline{\hat{r}}$ is an odd parity scalar function (a psudoscalar).

Substitute ψ into (1) in Pauli-Dirac representation.

$$
\left(\begin{array}{cc}
m+S+V & -i \underline{\sigma} \cdot \underline{V} \tag{2}\\
-\underline{\sigma} \cdot \underline{V} & -m-S+V
\end{array}\right)\binom{f(r) \chi}{g(r) i \underline{\sigma} \cdot \hat{r} \chi}=E \psi
$$

Use $\underline{\sigma} \cdot \underline{\nabla} f(r)=\underline{\sigma} \cdot \hat{r} \frac{d f}{d r}$;

$$
\underline{\sigma} \cdot \underline{\nabla}\left(\frac{\underline{\sigma} \cdot \underline{r}}{r} g(v)\right)=\underbrace{(\underline{\sigma} \cdot \underline{\hat{r}})^{2}}_{1} r \frac{d}{d r}\left(\frac{g}{r}\right)+\underbrace{\sigma \cdot}_{3} \cdot \underline{\sigma} \frac{g}{r}=\frac{d g}{d r}+\frac{2 g(r)}{r}
$$

$\rightarrow 2$ coupled equations

$$
\begin{gather*}
\left(\frac{d}{d r}+\frac{2}{r}\right) g(r)+(m+S+V-E) f=0 \tag{3}\\
\frac{d f}{d r}+(m+S-V+E) g(r)=0 \tag{4}
\end{gather*}
$$

Note signs: for particles, the large components $S f$ and $V f$, but for antiparticles the large components are $S g$ and $-V g$.

3.7.1 M.I.T. Bag Model

This is a crude model of quarks confined inside hadrons. Consider a proton, uud, $m=940 \mathrm{MeV} / \mathrm{c}^{2}, R_{p} \sim 1 \mathrm{fm}$. Consider the typical momenta. Say that $\lambda \sim 2 R$.

$$
p \sim \frac{h}{\lambda}(S I)=\frac{2 \pi}{\lambda}(N U)=\frac{\pi}{R_{p}} \sim 600 \mathrm{MeV} / \mathrm{c}
$$

So we are obviously dealing with a relativistic situation.
We also know that quarks interact weakly at short distances $r \ll 1 \mathrm{fm}$, and interact strongly at distances $r \sim 1 f m$ (because that's the size of the proton...).

A simple model is that the three quarks move independently inside a scalar potential well. Let $S(r)=0$ within $r<R\left(R \sim R_{p}\right)$, and $S(r)=S_{0}$ at $r>R$. (5) Why a scalar potential S, not a vector V ? Because a scalar confines both quarks and antiquarks, and we want the model to work for antiprotons too.

An addition is to set $m_{q}=0$, which is good for m_{u}, m_{d}.
(Note that this is not the constituent mass $=$ the mass of a bare quark + virtual gluons - the latter is modeled by S).

Consider the radial equations for f, g using (3) and (4). $r<R$:

$$
\begin{gathered}
\left(\frac{d}{d r}+\frac{2}{r}\right) g(r)-E f=0 \\
\frac{d f}{d r}+E g=0 \\
\rightarrow \frac{d^{2} f}{d r^{2}}+\frac{2}{r} \frac{d f}{d r}+E^{2} f=0
\end{gathered}
$$

$r>R:$

$$
\begin{gather*}
\left(\frac{d}{d r}+\frac{2}{r}\right) g+\left(S_{0}-E\right) f=0 \\
\frac{d f}{d r}+\left(S_{0}+E\right) g=0 \\
\rightarrow \frac{d^{2} f}{d r^{2}}+\frac{2}{r} \frac{d f}{d r}+\left(E^{2}-S_{0}^{2}\right) f=0 \tag{6}
\end{gather*}
$$

To solve these equations, set $f(r)=\frac{u(r)}{r}$ to get rid of the $\frac{2}{r} \frac{d f}{d r}$ term, and solve for u. Note that the solutions are those for the Bessel functions. Inside:

$$
\begin{gathered}
f(r)=\frac{A \sin (E r)}{r} \text { (finite at } r=0!\text {) } \\
g(r)=A\left(\frac{\sin (E r)}{E r^{2}}-\frac{\cos (E r)}{r}\right)
\end{gathered}
$$

Outside $S_{0}>E, k=\sqrt{S_{0}{ }^{2}-E^{2}}$:

$$
\begin{aligned}
& f(r)=\frac{B e^{-k r}}{r}(\rightarrow 0 \text { as } r \rightarrow \infty) \\
& g(r)=\frac{B}{S_{0}+E}\left(\frac{k e^{-k r}}{r}-\frac{e^{-k r}}{r^{2}}\right) .
\end{aligned}
$$

Assume S_{0} is very large $(\gg E, 1 / R)$.

$$
\begin{equation*}
g(r) \approx \frac{B e^{-k r}}{r}=f(r) \tag{7}
\end{equation*}
$$

At the surface, $f(r), g(r)$ continuous. So (7) implies that for $r \rightarrow R$ from below (i.e. inside),

$$
f(R)=g(R)
$$

i.e. $\frac{\sin E R}{R}=\frac{\sin E R}{E R^{2}}-\frac{\cos E R}{R}$, or $\tan E R=\frac{E R}{1-E R}$.

This equation has a graphical solution:

$x=E R=2.04$
$\rightarrow E_{S_{1 / 2}}=\frac{2.04}{R}$
and $M=3 E=\frac{6.12}{R}$ (three quarks)
Put $R=1 f, M \approx 1200 \mathrm{MeV}$
Alternatively, $E=M=940 \mathrm{MeV}, R=0.8 \mathrm{fm}$.
This is not bad for a first attempt. Can elaborate e.g. by including single gluon exchange between the quarks, and can calculate more things.

