$$
\begin{gather*}
x \rightarrow x^{\prime}=a x \\
\psi^{\prime}\left(x^{\prime}\right)=S(a) \psi(x) \\
S^{-1}(a) \gamma^{\mu} S(a)=a^{\mu}{ }_{v} \gamma^{v} \tag{5}\\
S^{-1}(a)=\gamma^{0} S(a) \gamma^{0}(6 \tag{6}
\end{gather*}
$$

Parity: $t \rightarrow t^{\prime}=t, \underline{x} \rightarrow \underline{x}^{\prime}=-\underline{x}$, i.e. $x^{\prime \mu}=a^{\mu}{ }_{v} x^{\nu}$.

$$
(a)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1 \\
0 & 0 & \ddots
\end{array}\right)
$$

satisfies $a^{\mu}{ }_{v} a^{\nu}{ }_{\sigma}=g^{\mu}{ }_{\sigma}=\delta_{\mu \sigma}$. Invariance requires $\psi^{\prime}\left(x^{\prime}\right)=P \psi(x)$, where $P=P(a)$ satisfies (5) and (6), and we also require $P^{2}=I$, i.e. $P^{-1}=P$. This is all satisfied with

$$
P=\eta \gamma^{0}
$$

where $n= \pm 1$ and is undetermined. Usually set $\eta=+1$ (convention).
Consider a particle at rest in Dirac representation, where:

$$
\begin{gathered}
\gamma^{0}=\left(\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right) \\
\psi_{+}(x)=\binom{\chi_{s}}{0} e^{-i m t} \quad(E=m) \\
\psi_{-}(x)=\binom{0}{\chi_{s}} e^{i m t}(E=-m)
\end{gathered}
$$

So:

$$
\begin{aligned}
& P \psi_{+}=\eta \psi_{+} \\
& P \psi_{-}=\eta \psi_{-}
\end{aligned}
$$

A particle at rest is in an eigenstate of P with "intrinsic parity" $\eta(=+1$ by convention). An antiparticle at rest has intrinsic parity $-\eta$, i.e. particle and antiparticle have opposite parities. This is verified in $e^{+} e^{-} \rightarrow \gamma$, , and is important in the quark model of mesons.

Consider a particle in motion with positive energy

$$
\left.\begin{array}{rl}
\Psi_{p, s}^{\dagger}(x)=N \sqrt{E(p)+m}\left(\begin{array}{c}
\chi_{s} \\
\frac{\sigma}{\underline{\sigma}} \underline{p} \\
E+m
\end{array}\right) \chi_{s}
\end{array}\right) e^{-i(E t-\underline{p}, \underline{x})} .
$$

i.e. under P transform, $\underline{p} \rightarrow-\underline{p}, s \rightarrow s$, phase change η.

3.6 Interactions with Fields

Consider an EM field,

$$
A^{\mu}(x)=\left(A^{0}(x), \underline{A}(x)\right)
$$

introduced by the minimal substitution

$$
\partial_{\mu} \rightarrow \partial_{\mu}+i q A_{\mu}
$$

where q is the charge. We can also consider the Lorentz scalar fields by substitution:

$$
m \rightarrow m+S(x)
$$

where m is the mass. Both obviously leave the Dirac equation Lorentz invalient, and give

$$
\begin{gather*}
{\left[i \gamma^{\mu}\left(\partial_{\mu}+i q A_{\mu}-m-S\right)\right] \psi(x)=0} \tag{1}\\
\text { or } i \frac{\partial \psi}{\partial t}=\left[\underline{\alpha} \cdot(-i \underline{\nabla}-q \underline{A})+\beta(m+S)+q A^{0}\right] \psi(x)=0 \tag{2}
\end{gather*}
$$

3.6.1 The Dirac Magnetic Moment

Consider EM fields only $S(x)=0$. Look for solutions of the form

$$
\begin{equation*}
\psi(x)=\binom{\phi(x)}{\eta(x)} e^{-i E t} \tag{3}
\end{equation*}
$$

in Dirac representation. Substitute in (2) $\rightarrow 2$ coupled equations:

$$
\begin{gather*}
\underline{\sigma} \cdot(-i \underline{\nabla}-q \underline{A}) \eta+\left(q A^{0}+m\right) \phi=E \phi \\
\underline{\sigma} \cdot(i \underline{\nabla}-q \underline{A}) \phi+\left(q A^{0}-m\right) \eta=E \eta \tag{7}
\end{gather*}
$$

Consider non-relativistic approximations for positive energies:

$$
\varepsilon=E-m \ll m,\left|q A^{\mu}\right| \ll m
$$

(5) becomes

$$
\eta=\frac{1}{2 m} \underline{\sigma} \cdot(-i \underline{\nabla}-q \underline{A}) \phi \rightarrow \eta \ll \phi
$$

Substitute this into (4);

$$
\begin{equation*}
\frac{1}{2 m}[\underline{\sigma} \cdot(-i \underline{\nabla}-q \underline{A})]^{2} \phi+q A^{0} \phi=\varepsilon \phi \tag{6}
\end{equation*}
$$

Tidy up the first term using

$$
\begin{gathered}
(\underline{\sigma} \cdot \underline{a})(\underline{\sigma} \cdot \underline{b})=\underline{a} \cdot \underline{b}+i \underline{\sigma}(\underline{a} \times \underline{b})(\mathrm{cf} . \text { Ex. 1) } \\
\rightarrow[]^{2} \phi=(-i \underline{\nabla}-q \underline{A}) \cdot(-i \underline{\nabla}-q \underline{A}) \phi+i \underline{\sigma}(-i \underline{\nabla}-q \underline{A}) \phi=(A)+(B) \\
(B)=-q \underline{\sigma} \cdot[\underline{\nabla} \times(A \phi)+\underline{A} \times \underline{\nabla} \phi] \\
=-q \underline{\sigma}(\underline{\nabla} \times \underline{A}) \phi
\end{gathered}
$$

using $\underline{\nabla} \times(\underline{A} \phi)=\phi(\underline{\nabla} \times \underline{A})-\underline{A} \times(\underline{\nabla} \phi)$.

$$
\begin{gathered}
\underline{S}=\frac{1}{2} \underline{\sigma}, \underline{B}=\underline{\nabla} \times \underline{A} \\
(A)=(-i \underline{\nabla}-q \underline{A}) \cdot(-i \underline{\nabla}-q \underline{A}) \phi \\
=-\nabla^{2} \phi+i q \underline{\nabla} \cdot(\underline{A} \phi)+i q \underline{A} \cdot \underline{\nabla} \phi+q^{2} \underline{A}^{2} \phi
\end{gathered}
$$

Exploit gauge invariance, i.e. $\underline{E}=-\underline{\nabla} \phi-\frac{\partial \underline{A}}{\partial t}, \underline{B}=\underline{\nabla} \times \underline{A}$, and physics in general is unchanged by $\phi \rightarrow \phi+\frac{\partial f}{\partial t}, \underline{A} \rightarrow \underline{A}-\underline{\nabla} f$, i.e. ϕ, \underline{A} are not uniquely defined by ∇. This is a popular, but not unique, choice:
Coulomb gauge: $\underline{\nabla} \cdot \underline{A}=0$
Then $\underline{\nabla} \cdot(\underline{A} \phi)=\underbrace{(\underline{\nabla} \cdot \underline{A})}_{=0} \phi+\underline{A} \cdot(\underline{\nabla} \phi)$

$$
\rightarrow(A)=\left(-\nabla^{2}+2 i q \underline{A} \cdot \underline{\nabla}+q \underline{A}^{2}\right) \phi
$$

Specialize to uniform magnetic field \underline{B} :

$$
\begin{aligned}
& \underline{A}= \frac{1}{2}(\underline{B} \cdot \underline{x})(\text { Ex. 1) } \\
& \rightarrow \quad \begin{aligned}
2 i q \underline{A} \cdot \underline{\nabla} & =i q(\underline{B} \times \underline{x}) \cdot \underline{\nabla} \\
& =i q(\underline{x} \times \underline{\nabla}) \underline{B}=-q \underline{B} \cdot \underline{L}
\end{aligned}
\end{aligned}
$$

since $\underline{L}=\underline{x} \times \underline{p}=-i(\underline{x} \times \underline{\nabla})$. Neglecting the $i \hbar$ factor, $\underline{x} \cdot \underline{\nabla}=$ angular momentum operator.

Put it all together: Dirac equation (6) in the non-relativistic limit with $E>0$ and constant magnetic fields becomes

$$
\left[-\frac{1}{2 m} \nabla^{2}+q A^{0}-\underline{\mu} \cdot \underline{B}+\frac{q^{2} \underline{A}^{2}}{2 m}\right] \phi=\varepsilon \phi
$$

this is the Schrödinger equation (i.e. Pauli equation) with magnetic moment

$$
\mu=\frac{q}{2 m}(\underline{L}+2 \underline{S})
$$

i.e. predict hitherto mysterious factor

$$
g=2
$$

for pure spin. Another triumph for Dirac equation.

