$$\begin{aligned} x \to x' &= ax \\ \psi'(x') &= S(a)\psi(x) \\ S^{-1}(a)\gamma^{\mu}S(a) &= a^{\mu}_{\nu}\gamma^{\nu} (5) \\ S^{-1}(a) &= \gamma^{0}S(a)\gamma^{0} (6) \end{aligned}$$
Parity: $t \to t' = t$, $\underline{x} \to \underline{x}' = -\underline{x}$, i.e. $x'^{\mu} = a^{\mu}_{\nu}x^{\nu}$.

$$(a) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & \ddots \end{pmatrix}$$

satisfies $a^{\mu}_{\nu}a^{\nu}_{\sigma} = g^{\mu}_{\sigma} = \delta_{\mu\sigma}$. Invariance requires $\psi'(x') = P\psi(x)$, where P = P(a) satisfies (5) and (6), and we also require $P^2 = I$, i.e. $P^{-1} = P$. This is all satisfied with

$$P = \eta \gamma^0$$

where $n = \pm 1$ and is undetermined. Usually set $\eta = +1$ (convention).

Consider a particle at rest in Dirac representation, where:

$$\gamma^{0} = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$$
$$\psi_{+}(x) = \begin{pmatrix} \chi_{s} \\ 0 \end{pmatrix} e^{-imt} \quad (E = m)$$
$$\psi_{-}(x) = \begin{pmatrix} 0 \\ \chi_{s} \end{pmatrix} e^{imt} \quad (E = -m)$$

So:

$$P\psi_{+} = \eta\psi_{+}$$
$$P\psi_{-} = \eta\psi_{-}$$

A particle at rest is in an eigenstate of P with "intrinsic parity" η (=+1 by convention). An antiparticle at rest has intrinsic parity $-\eta$, i.e. particle and antiparticle have opposite parities. This is verified in $e^+e^- \rightarrow \gamma\gamma$, and is important in the quark model of mesons.

Consider a particle in motion with positive energy

$$\psi^{\dagger}_{p,s}(x) = N\sqrt{E(p)} + m \begin{pmatrix} \chi_s \\ \underline{\sigma} \cdot \underline{p} \\ \overline{E+m} \chi_s \end{pmatrix} e^{-i(Et-\underline{p} \cdot \underline{x})}$$

$$P\psi^{\dagger}_{\underline{p},\underline{s}}(t,\underline{x}) = P\psi(x')$$

$$= \eta\gamma^0 \psi^{\dagger}_{\underline{p},\underline{s}}(t,-\underline{x})$$

$$= \eta\sqrt{E(p)} + m \begin{pmatrix} \chi_s \\ -\frac{\underline{\sigma} \cdot \underline{p}}{E+m} \chi_s \end{pmatrix} e^{-i(Et-\underline{p} \cdot \underline{x})}$$

$$= \psi^{\dagger}_{\underline{p},\underline{s}}(\underline{x})$$

i.e. under P transform, $p \rightarrow -p$, $s \rightarrow s$, phase change η .

3.6 Interactions with Fields

Consider an EM field,

$$A^{\mu}(x) = \left(A^{0}(x), \underline{A}(x)\right)$$

introduced by the minimal substitution

$$\partial_{\mu} \rightarrow \partial_{\mu} + iqA_{\mu}$$

where q is the charge. We can also consider the Lorentz scalar fields by substitution:

$$m \rightarrow m + S(x)$$

where m is the mass. Both obviously leave the Dirac equation Lorentz invalient, and give

$$\left[i\gamma^{\mu}\left(\partial_{\mu}+iqA_{\mu}-m-S\right)\right]\psi(x)=0 \quad (1)$$

or $i\frac{\partial\psi}{\partial t}=\left[\underline{\alpha}\cdot\left(-i\underline{\nabla}-q\underline{A}\right)+\beta(m+S)+qA^{0}\right]\psi(x)=0 \quad (2)$

3.6.1 The Dirac Magnetic Moment

Consider EM fields only S(x) = 0. Look for solutions of the form

$$\psi(x) = \begin{pmatrix} \phi(x) \\ \eta(x) \end{pmatrix} e^{-iEt}$$
(3)

in Dirac representation. Substitute in (2) \rightarrow 2 coupled equations:

$$\underline{\sigma} \cdot (-i\underline{\nabla} - q\underline{A})\eta + (qA^0 + m)\phi = E\phi \quad (4)$$

$$\underline{\sigma} \cdot (i\underline{\nabla} - q\underline{A})\phi + (qA^0 - m)\eta = E\eta$$
(5)

Consider non-relativistic approximations for positive energies:

$$\varepsilon = E - m \ll m, \ \left| q A^{\mu} \right| \ll m$$

(5) becomes

$$\eta = \frac{1}{2m} \underline{\sigma} \cdot \left(-i \underline{\nabla} - q \underline{A} \right) \phi \to \eta \ll \phi$$

Substitute this into (4);

$$\frac{1}{2m} \left[\underline{\sigma} \cdot \left(-i\underline{\nabla} - q\underline{A} \right) \right]^2 \phi + qA^0 \phi = \varepsilon \phi \quad (6)$$

Tidy up the first term using

$$(\underline{\sigma} \cdot \underline{a})(\underline{\sigma} \cdot \underline{b}) = \underline{a} \cdot \underline{b} + i\underline{\sigma}(\underline{a} \times \underline{b}) \text{ (cf. Ex. 1)}$$

$$\Rightarrow []^{2} \phi = (-i\underline{\nabla} - q\underline{A}) \cdot (-i\underline{\nabla} - q\underline{A})\phi + i\underline{\sigma}(-i\underline{\nabla} - q\underline{A})\phi = (A) + (B)$$

$$(B) = -q\underline{\sigma} \cdot [\underline{\nabla} \times (A\phi) + \underline{A} \times \underline{\nabla}\phi]$$

$$= -q\underline{\sigma}(\underline{\nabla} \times \underline{A})\phi$$

using $\underline{\nabla} \times (\underline{A}\phi) = \phi(\underline{\nabla} \times \underline{A}) - \underline{A} \times (\underline{\nabla}\phi).$

$$\underline{S} = \frac{1}{2} \underline{\sigma}, \ \underline{B} = \underline{\nabla} \times \underline{A}$$
$$(A) = (-i\underline{\nabla} - q\underline{A}) \cdot (-i\underline{\nabla} - q\underline{A})\phi$$
$$= -\nabla^2 \phi + iq\underline{\nabla} \cdot (\underline{A}\phi) + iq\underline{A} \cdot \underline{\nabla}\phi + q^2 \underline{A}^2\phi$$

Exploit gauge invariance, i.e. $\underline{E} = -\underline{\nabla}\phi - \frac{\partial \underline{A}}{\partial t}$, $\underline{B} = \underline{\nabla} \times \underline{A}$, and physics in general is unchanged by $\phi \rightarrow \phi + \frac{\partial f}{\partial t}$, $\underline{A} \rightarrow \underline{A} - \underline{\nabla}f$, i.e. ϕ, \underline{A} are not uniquely defined by ∇ . This is a popular, but not unique, choice: Coulomb gauge: $\underline{\nabla} \cdot \underline{A} = 0$ Then $\underline{\nabla} \cdot (\underline{A}\phi) = (\underline{\nabla} \cdot \underline{A})\phi + \underline{A} \cdot (\underline{\nabla}\phi)$

Then
$$\underline{\nabla} \cdot (\underline{A}\phi) = \underbrace{(\underline{\nabla} \cdot \underline{A})}_{=0} \phi + \underline{A} \cdot (\underline{\nabla}\phi)$$

 $\Rightarrow (A) = (-\nabla^2 + 2iq\underline{A} \cdot \underline{\nabla} + q\underline{A}^2)\phi$

Specialize to uniform magnetic field \underline{B} :

$$\underline{A} = \frac{1}{2} (\underline{B} \cdot \underline{x}) \quad (\text{Ex. 1})$$

$$\Rightarrow \begin{array}{l} 2iq\underline{A} \cdot \underline{\nabla} = iq(\underline{B} \times \underline{x}) \cdot \underline{\nabla} \\ = iq(\underline{x} \times \underline{\nabla})\underline{B} = -q\underline{B} \cdot \underline{L} \end{array}$$

since $\underline{L} = \underline{x} \times \underline{p} = -i(\underline{x} \times \underline{\nabla})$. Neglecting the $i\hbar$ factor, $\underline{x} \cdot \underline{\nabla} =$ angular momentum operator.

Put it all together: Dirac equation (6) in the non-relativistic limit with E > 0 and constant magnetic fields becomes

$$\left[-\frac{1}{2m}\nabla^2 + qA^0 - \underline{\mu} \cdot \underline{B} + \frac{q^2\underline{A}^2}{2m}\right]\phi = \varepsilon\phi$$

this is the Schrödinger equation (i.e. Pauli equation) with magnetic moment

$$\mu = \frac{q}{2m} (\underline{L} + 2\underline{S})$$

i.e. predict hitherto mysterious factor

for pure spin. Another triumph for Dirac equation.