Solutions E > m, \underline{p} , $s \left(= +\frac{1}{2}, -\frac{1}{2}\right)$ Plus solution -E < -m, $-\underline{p}$, -s.

3.4 Dirac hole theory

Spin-1/2 particles are fermions, and they obey the exclusion principle. Imagine that the vacuum is a completely filled 'sea' of negative energy states.

Positive energy e^- can't fall down to negative energy states because of the exclusion principle.

But you can excite a particle from the sea. The hole looks like an antiparticle, i.e. absence of e^- with $-E, -\underline{p}, -s$ looks like e^+ with E, \underline{p}, s . This is a way to live with negative energy states – for a while!

3.5 Relativistic Covarience 3.5.1 Covariant Notation

Consider the Dirac equation,

$$i\frac{\partial\psi}{\partial t} = \left[-i\underline{\alpha}\cdot\underline{\nabla} + \beta m\right]\psi \ (1)$$

This equation is not obviously covariant.

Multiply by β from the left, and define $\gamma^0 = \beta$, $\gamma^i = \beta \alpha_i$ (i = 1, 2, 3). $i\gamma^0 \frac{\partial \psi}{\partial x^0} = \left[-i\gamma^i \frac{\partial}{\partial x^i} + m\right] \psi$

since $\beta^2 = 1$. Writing $\gamma^{\mu} = (\gamma^0, \gamma^i)$, then (1) becomes

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi(x) = 0 \quad (2)$$

where the γ -matrices satisfy

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu} (3)$$

$$\gamma^{\mu\dagger} = \gamma^{0}\gamma^{\mu}\gamma^{0} (4a)$$

or $\gamma^{0\dagger} = \gamma^{0}, \ \gamma^{i\dagger} = -\gamma^{i} (4b)$

which follow from the properties of β , α_i . e.g. $(\gamma^i)^{\dagger} = (\beta \alpha_i)^{\dagger} = \alpha_i \beta = -\beta \alpha_i = -\gamma^i$.

It's also useful to introduce the (Dirac) adjoint

$$\overline{\psi}(x) = \psi^{\dagger}(x)\gamma^{0} \quad (5)$$

The charge current density $j^{\mu}(x) = (\rho, \underline{j})$ can be rewritten (exercise)
 $j^{\mu}(x) = \overline{\psi}(x)\gamma^{\mu}\psi(x) \quad (6)$

with the equation of continuity

$$\partial_{\mu}j^{\mu}(x) = 0 \quad (7).$$

This all looks covariant – but is it?

If they are valid physical equations, they must be by the principle of special relativity. But what are the transformation properties of ψ ?

3.5.2 Proof of covariance

Consider a Lorentz transformation from $O \to O'$ such that $x \to x' = ax \left(\Lambda_{\mu}^{\nu} \to a_{\mu}^{\nu} \right)$ i.e. $x'^{\mu} = a^{\mu}_{\nu} x^{\nu}$ (1) where $a^{\mu}_{\nu} a^{\sigma}_{\mu} = g^{\sigma}_{\nu} = \delta^{\sigma}_{\nu}$ (2).

What is the transformation law which takes $\psi(x) \rightarrow \psi'(x')$?

Define S(a) by

$$\psi'(x') = S(a)\psi(x) \quad (3)$$

and correspondingly,

$$\psi(x) = S^{-1}(a)\psi'(x') = S(a^{-1})\psi'(x')$$
(4)

Then the Dirac equation is covariant and $j^{\mu}(x) = \overline{\psi}(x)\gamma^{\mu}\psi(x)$ is a 4-vector, provided:

$$S^{-1}(a)\gamma^{\mu}S(a) = a^{\mu}_{\nu}\gamma^{\nu}$$
(5)

and

$$S^{-1}(a) = \gamma^0 S(a) \gamma^0 \quad (6).$$

To prove this is so, we need to show that the Dirac equation is invariant in form under Lorentz transformation plus (5) and (6), i.e.

$$\left(i\gamma^{\mu}\partial_{\mu}'-m\right)\psi'(x')=0 \quad (7)$$

implies

$$(i\gamma^{\mu}\partial_{\mu}-m)\psi(x)=0$$

(or vice versa) where $\partial'_{\mu} = \frac{\partial}{\partial x^{\mu}} = a_{\mu}^{\sigma} \partial_{\sigma}$. (8)

Substitute (3) and (8) into (7).

$$\rightarrow \left(i\gamma^{\mu}a_{\mu}{}^{\sigma}\partial_{\sigma} - m \right) S(a)\psi(x) = 0$$

Multiply this from the left by $S^{-1}(a)$.

$$\rightarrow \left(iS^{-1}(a)\gamma^{\mu}S(a)a_{\mu}{}^{\sigma}\partial_{\sigma}-\underbrace{\left(S^{-1}(a)S(a)\right)}_{=I}m\right)\psi(x)=0$$

But by (5),
$$S^{-1}(a)\gamma^{\mu}S(a)a_{\mu}^{\sigma} = \gamma^{\nu}\underbrace{a_{\nu}^{\mu}a_{\mu}^{\sigma}}_{\delta,\sigma} = \gamma^{\sigma}$$
 by (2).

So (9) becomes

$$(i\gamma^{\sigma}\partial_{\sigma}-m)\psi(x)=0$$

as required.

What about
$$j^{\mu}(x) = \overline{\psi}\gamma^{\mu}\psi(x)$$
?
To show it's a 4-vector, we need to show
 $\overline{\psi}'(x')\gamma^{\mu}\psi'(x') = a^{\mu}{}_{\nu}\overline{\psi}(x)\gamma^{\nu}\psi(x)$.
Consider the transformation law of $\overline{\psi}'(x')$.
 $\psi'(x') = S(a)\psi(x) \rightarrow \psi'^{\dagger}(x') = \psi^{\dagger}(x)S^{\dagger}(a)$
Therefore $\overline{\psi}'(x') = \psi^{\dagger}'(x')\gamma^{0} = \psi^{\dagger}(x)\gamma^{0}\gamma^{0}S^{\dagger}(a)\gamma^{0} = \overline{\psi}(x)\gamma^{0}S^{\dagger}(a)\gamma^{0}$
So $\overline{\psi}'(x') = \overline{\psi}(x)S^{-1}(a)$ by (6) (10)
Therefore,
 $\overline{\psi}'(x')\gamma^{\mu}\psi'(x') = \overline{\psi}(x)S^{-1}(a)\gamma^{\mu}S(a)\psi(x)$

$$= a^{\mu}_{\nu} \overline{\psi}(x) \gamma^{\nu} \psi(x)$$

which is equation (9). QED. Note that (10) also implies $\overline{\psi}(x)\psi(x)$ is a Lorentz scalar, etc.

3.5.3 Lorentz boost

Consider $O \to O'$ $(x, y) \to (x', y')$ with difference vt. Then x' = ax where $a = \begin{pmatrix} \cosh \omega & -\sinh \omega & 0 & 0 \\ \sinh \omega & \cosh \omega & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ where $\sinh \omega = \frac{v}{\sqrt{1 - v^2}}$ and $\cosh \omega = \frac{1}{\sqrt{1 - v^2}}$. Then $S(a) = e^{\frac{\omega a_1}{2}} = I \cosh \frac{\omega}{2} + \alpha_1 \sinh \frac{\omega}{2}$ where we have used the fact that $\alpha_1^2 = 1$; $\alpha_1^{2n} = 1$; $\alpha_1^{2n+1} = \alpha_1$. This satisfies the conditions (5) and (6). (Exercise – verify this).

Note – for particles at rest,
$$\psi \propto \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 etc., and we can use a Lorentz boost to get $\psi(v)$.