3.2 Angular Momentum \& Spin

Compare with orbital angular momentum.

$$
\underline{L}=\underline{x} \times \underline{p}
$$

or

$$
L_{i}=\varepsilon_{i j k} x_{j} p_{k}
$$

with j, k summed over.

$$
\varepsilon_{i j k}=\left\{\begin{array}{cc}
1 & \text { cyclic permutation of } 1,2,3 \\
-1 & \text { non }- \text { cyclic permutation of } 1,2,3 \\
0 & \text { if anytwo are equal }
\end{array}\right.
$$

Is orbital angular momentum conserved? If so, need $[H, \underline{L}]=0$ where
$H=-i \underline{\alpha} \cdot \underline{\nabla}+\beta m=\underline{\alpha} \cdot \underline{p}+\beta m$ and $\left[x_{i}, p_{j}\right]=i \delta_{i j}$.
Compare this with

$$
\begin{aligned}
{\left[H, L_{j}\right] } & =\left[\alpha_{i} p_{i}, \varepsilon_{j k l} x_{k} p_{l}\right] \\
& =\varepsilon_{j k l} \alpha_{i}\left[p_{i}, x_{k}\right] p_{l} \\
& =\varepsilon_{j k l} \alpha_{i}\left(-i \delta_{i k}\right) p_{l} \\
& -i \varepsilon_{j k l} \alpha_{k} p_{l}
\end{aligned}
$$

Therefore, $[H, \underline{L}]=-i \underline{\alpha} \times \underline{p} . \underline{L}$ is not conserved. But total angular momentum must be conserved! Cf. the matrix operators,

$$
\Sigma_{j}=\left(\begin{array}{cc}
\sigma_{i} & 0 \\
0 & \sigma_{j}
\end{array}\right)
$$

Can show (exercise),

$$
\left[\alpha_{i}, \Sigma_{j}\right]=2 i \varepsilon_{i j k} \alpha_{k}
$$

and

$$
\left[\beta, \Sigma_{j}\right]=0
$$

So,

$$
\left[H, \Sigma_{j}\right]=\left[\alpha_{i} p_{i}+\beta m, \Sigma_{j}\right]=2 i \varepsilon_{i j k} \alpha_{k} p_{i}=2 i \varepsilon_{i j k} \alpha_{k} p_{i}
$$

i.e. $[H, \underline{\Sigma}]=2 i \underline{\alpha} \times \underline{p}$. Hence,

$$
\left[H, \underline{L}+\frac{1}{2} \underline{\Sigma}\right]=0
$$

i.e. $\underline{J}=\underline{L}+\underline{S}$ is conserved, where the spin operator $\underline{S}=\frac{1}{2} \underline{\Sigma}$. Further, since $\Sigma_{i}^{2}=1$, the eigenvalues of S_{i} are $\pm 1 / 2 \rightarrow$ particle has spin-1/2.

3.3 Plane Wave States

Look for solutions

$$
\psi(x)=N e^{-i p x} U(\underline{p})
$$

where $U(\underline{p})$ is a 4-component spinor to be determined, and $p^{2}=E^{2}-m^{2}$ to satisfy the $K E$ equation.

Use Dirac representation.

$$
\underline{\alpha}=\left(\begin{array}{ll}
0 & \underline{\sigma} \\
\underline{\sigma} & 0
\end{array}\right), \beta=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \text { and } U=\binom{\xi}{\eta}
$$

where ξ, η are 2-component objects. Substitute into the Dirac equation.

$$
i \frac{\partial \psi}{\partial t}=-i \underline{\alpha} \cdot \underline{\nabla} \psi+\beta m \psi
$$

and use

$$
\begin{aligned}
\partial_{\mu} e^{-i p x} & =\left(\frac{\partial}{\partial t}, \underline{\nabla}\right) e^{-i(E t-\underline{p} \cdot \underline{x})} \\
& =-i(E,-\underline{p}) e^{-i p x} \\
\rightarrow E\binom{\xi}{\eta} & =\left(\begin{array}{cc}
m & \underline{\sigma} \cdot \underline{p} \\
\underline{\sigma} \cdot \underline{p} & -m
\end{array}\right)\binom{\xi}{\eta}
\end{aligned}
$$

or

$$
\begin{align*}
E \xi & =m \xi+\underline{\sigma} \cdot \underline{p} \eta \tag{17}\\
E \eta & =\underline{\sigma} \cdot \underline{p} \xi-m \eta \\
& \rightarrow \eta=\frac{\underline{\sigma} \cdot \underline{p}}{E+m} \xi
\end{align*}
$$

Substitute this into (1);

$$
\begin{aligned}
& (E+m)(E-m) \xi=(\underline{\sigma} \cdot \underline{p})^{2} \xi \\
& \quad \rightarrow\left(E^{2}-m^{2}\right) \xi=\underline{p}^{2} \xi(3)
\end{aligned}
$$

cf. positive energy $E(\underline{p})=+\sqrt{m^{2}+\underline{p}^{2}}$ (i.e. $\left|\sqrt{m^{2}+\underline{p}^{2}}\right|$).
There are two solutions to (3):

$$
\xi_{s}=\sqrt{E(\underline{p})+m} \chi_{s}
$$

where the Pauli spinors

$$
\chi_{1 / 2}=\binom{1}{0} ; \chi_{-1 / 2}=\binom{0}{1}
$$

Hence, using (2):

$$
U_{s}(\underline{p})=\sqrt{E(\underline{p})+m}\binom{\chi_{s}}{\frac{\underline{\sigma} \cdot \underline{p}}{E(\underline{p})+m} \chi_{s}}
$$

with normalization

$$
U_{s}(\underline{p})^{\dagger} U_{s}(\underline{p})=(E+m)\left[1+\frac{\underline{p}^{2}}{(E+m)^{2}}\right]=2 E
$$

Normalize in a large box, volume V:

$$
\begin{aligned}
& \int_{V} \psi^{\dagger} \psi d^{3} x=1 \\
& \rightarrow N=\frac{1}{\sqrt{2 E V}}
\end{aligned}
$$

and

$$
\psi_{p, s}(x)^{\dagger}=\frac{U_{s}(\underline{p}) e^{-i p x}}{\sqrt{2 E V}}
$$

This describes a particle with energy $E(\underline{p})>m$, momentum \underline{p}, and the component of spin in the \underline{p} direction of $s= \pm 1 / 2$.

In the same way, we can construct 2 negative energy solutions.
It is convenient to write as

$$
\psi(x)=N e^{+i p x} v_{s}(\underline{p})
$$

$e^{+i(E t-\underline{p} x)}-\operatorname{energy} E(\underline{p})$, momentum \underline{p}.
Note - group velocity $v_{g}=\frac{d \omega}{d k}=\frac{d E}{d p}$ is in direction of \underline{p}.
As before, but eliminating ξ, get (exercise)

$$
v_{s}(\underline{p})=\sqrt{E(\underline{p})+m}\binom{\frac{\sigma}{E+\underline{p}}}{\chi_{-s}}
$$

and wavefunction

$$
\psi_{p s}^{(-)}(x)=v_{s}(\underline{p}) \frac{e^{i p x}}{\sqrt{2 E V}}
$$

This describes a particle with energy $-E(\underline{p})<m$, momentum $-\underline{p}$, and the spin component in the \underline{p} direction of $-s= \pm 1 / 2$.

Note that in the non-relativistic limit $|\underline{p}| \ll m$,

$$
\begin{aligned}
& U_{s}(\underline{p}) \rightarrow \sqrt{2 m}\binom{\chi_{s}}{0} \\
& v_{s}(\underline{p}) \rightarrow \sqrt{2 m}\binom{0}{\chi_{-s}}
\end{aligned}
$$

i.e. they reduce to 2 -component Pauli spinors.

So - so far:

- No negative densities
- Predicted spin $-1 / 2$
- Still need + and - energies.

