There is propagation if $(E-V)^{2}>m^{2}$.
There are two cases:
Weak potential, $V<E$:
Propagation if $E-V>m$, i.e. $E-m>V$, i.e. if KE is above the barrier, as expected.
Strong potential, $V>E$:
Propagation if $E-V>m$, but can also get propagation if $(E-V)<-m$, i.e.
something gets through even at low energy if the barrier is high enough.
What is going on?
Consider the waves on the right, $z>0$:

$$
p^{\prime 2}=(V-E)^{2}-m^{2}
$$

By $\frac{d}{d p^{\prime}}$,

$$
2 p^{\prime}=2(V-E)\left(-\frac{d E}{d p^{\prime}}\right)
$$

So the group velocity

$$
v_{g}=\frac{d \omega}{d k}=\frac{d E}{d p^{\prime}}=-\frac{p^{\prime}}{V-E}
$$

This is greater than 0 , so the waves are moving to the right.
Consider the currents. We now have,

$$
p^{\prime}=\sqrt{(V-E)^{2}-m^{2}} .
$$

Substituting this into the previous expressions for the currents, we find that for $z<0$ the reflected current is bigger than the incoming current, $\left|j_{R}\right|>\left|j_{I}\right|$, and for $z>0$ the transmitted current $j_{T}<0$, i.e. the current is negative, and flows to the left.

Summary

For $V>E$, and $V-E>m$, the waves

This suggests an interpretation in terms of anti-particles:

- Particle/antiparticle pairs are created at the barrier if V is big enough.
- Particular to left with reflected waves
- Antiparticles (with opposite charge) go to the right.
- Interpret "conserved charge" as electric charge.

This suggests a similar effect in atoms if Z is large enough. For a full description, we have to abandon single particle theory. Leave this for the moment, and go back to the electron.

3. Dirac Equation

Returning to the start, and trying a different approach.

$$
H \psi=i \frac{d \psi}{d t}
$$

where

$$
\begin{equation*}
H=\sqrt{-\underline{\nabla}^{2}+m^{2}} \tag{2}
\end{equation*}
$$

For the KG equation, we avoided interpreting the square root by using

$$
H H \psi=\left(-\underline{\nabla}^{2}+m^{2}\right) \psi=-\frac{\partial^{2} \psi}{\partial t^{2}}
$$

This was second order in $\partial / \partial t$, which goes to negative conserved densities. Dirac looked for a $1^{\text {st }}$ order equation of form (1) to describe the electron, with

$$
H=-i \underline{\alpha} \cdot \underline{\nabla}+\beta m
$$

i.e.

$$
(-i \underline{\alpha} \cdot \underline{\nabla}+\beta m) \psi=i \frac{\partial \psi}{\partial t}(3)
$$

This is the Dirac Equation. The coefficients $\underline{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and β are determined by the requirement that

1. $\quad H$ is hermitian \rightarrow real E values
$\rightarrow \alpha, \beta$ are hermitian.
2. The equation

$$
H H \psi=\left(-i \sum_{i} \alpha_{i} \frac{\partial}{\partial x_{i}}+\beta m\right)\left(-i \sum_{j} \alpha_{j} \frac{\partial}{\partial x_{j}}+\beta m\right) \psi=-\frac{\partial^{2} \psi}{\partial t^{2}}
$$

is the same as the Klein-Gordon Equation, which will guarantee $E^{2}=p^{2}+m^{2}$.

Condition 2 is satisfied provided

$$
\begin{gathered}
\left\{\alpha_{i}, \alpha_{j}\right\} \equiv \alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \\
\left\{\beta, \alpha_{i}\right\}=\beta \alpha_{i}+\alpha_{i} \beta=0 \\
\beta^{2}=1
\end{gathered}
$$

(Collectively equation (4))
[Note: \{ \} represents the anti-commutator, which uses + rather than -]
β, α can't be numbers - but they can be matrices.
In order to satisfy this, we will need 4 matrices, and we need matrices of order at least 4. For example, (4) are satisfied by:

$$
\beta=\left(\begin{array}{ll}
I & 0 \tag{8}\\
0 & I
\end{array}\right), \alpha_{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right)
$$

where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{7}\\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

satisfying $\left\{\sigma_{i}, \sigma_{j}=2 \delta_{i j}\right\}$.

This solution is called the Dirac representation. There are other choices of 4×4 matrices possible, but they all give the same physics. You don't need a representation really - can instead work from the commutation equations, but this way is convenient.

So the Dirac equation

$$
i \frac{\partial \psi}{\partial t}=-i \underline{\alpha} \cdot \underline{\nabla} \psi+\beta m \psi
$$

is a matrix equation, as well as a differential equation, with a 4 -component wavefunction

$$
\psi(x)=\left(\begin{array}{l}
\psi_{1}(x) \\
\psi_{2}(x) \\
\psi_{3}(x) \\
\psi_{4}(x)
\end{array}\right)
$$

which is called a Dirac Spinor.
Since $\underline{\alpha}, \beta$ are hermitian, the adjoint equation (take the complex conjugate) is

$$
-i \frac{\partial \psi^{*}}{\partial t}=+i \underline{\nabla} \cdot\left(\psi^{*} \alpha\right)+m \psi^{*} \beta,(10)
$$

where

$$
\psi^{\dagger}(x)=\left(\psi_{1} *(x), \psi_{2} *(x), \psi_{3} *(x), \psi_{4} *(x)\right) .
$$

3.1 Conserved Current

Usual argument: $\psi^{\dagger} \times(9)$

$$
i \psi^{\dagger} \frac{\partial \psi}{\partial t}-i \psi^{\dagger} \underline{\alpha} \cdot \underline{\nabla} \psi+\beta m \psi^{\dagger} \psi \text { (a) }
$$

$(10) \times \psi$

$$
-i \frac{\partial \psi^{\dagger}}{d t} \psi=i \underline{\nabla} \psi^{\dagger} \cdot \alpha \psi+\beta m \psi^{\dagger} \psi \text { (b) }
$$

$\mathrm{a}-\mathrm{b}$:

$$
\frac{\partial \rho}{\partial t}+\underline{\nabla} \cdot \underline{j}=0
$$

where $\rho=\psi^{\dagger} \psi, \underline{j}=\psi^{\dagger} \underline{\alpha} \psi$
In particular,

$$
\begin{aligned}
\rho & =\psi^{\dagger} \psi \\
& =\psi_{1} * \psi_{1}+\psi_{2} * \psi_{2}+\psi_{3} * \psi_{3}+\psi_{4} * \psi_{4}>0
\end{aligned}
$$

So this can be treated as a probability density in the usual way. We need to understand the different components.

