Relativistic Quantum Mechanics — Lecture 5

There is propagation if (E—V)* > m?.

There are two cases:
Weak potential, V < E:
Propagation if E-V >m,1.e. E—m >V, ie.1f KE is above the barrier, as expected.

Strong potential, V > E:

Propagation if E—V >m, but can also get propagation if (E—V)<-m, i.e.
something gets through even at low energy if the barrier is high enough.
What is going on?

Consider the waves on the right, z>0:
p’= (V—E)2 -m’

dE
Mf:ﬂV—E{———)
dp'
So the group velocity
_do dE _  p'

V,=——=—7— - s
¢ dk dp' V-FE
This is greater than 0, so the waves are moving to the right.
Consider the currents. We now have,
p'=\(V-E) -m".
Substituting this into the previous expressions for the currents, we find that for z <0

jel>1Ji|, and for z>0 the
transmitted current j, <0, 1.e. the current is negative, and flows to the left.

the reflected current is bigger than the incoming current,
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This suggests an interpretation in terms of anti-particles:

- Particle/antiparticle pairs are created at the barrier if V is big enough.

- Particular to left with reflected waves

- Antiparticles (with opposite charge) go to the right.

- Interpret “conserved charge” as electric charge.
This suggests a similar effect in atoms if Z is large enough. For a full description, we
have to abandon single particle theory. Leave this for the moment, and go back to the
electron.
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3. Dirac Equation
Returning to the start, and trying a different approach.

.dy
Hy =i— (1
y=i—-

H=y-V+m® (2)

For the KG equation, we avoided interpreting the square root by using

o’y

o’

This was second order in d/dt, which goes to negative conserved densities. Dirac

looked for a 1** order equation of form (1) to describe the electron, with
H=—io.-V+PBm.

where

HHy =(-V*+m’ )y =-

i.e.
(—iet-V+ Pm)y = i%—‘t” 3)

This is the Dirac Equation. The coefficients ¢ = (al,az,%) and 3 are determined by

the requirement that
1. H is hermitian = real E values
— a, B are hermitian.

2. The equation

. d . 0 oy
HHy = (-l;ai a_xi+ ﬁm}(—l;aj g + ﬁm]w =— ¥

J

is the same as the Klein-Gordon Equation, which will guarantee
E’=p°+m’.

Condition 2 is satisfied provided
{ai,aj} = oo, + a0, =206,
{ﬁ’ai} =po; +a,f=0

B =1
(Collectively equation (4))
[Note: { }represents the anti-commutator, which uses + rather than -]

B, o can’t be numbers — but they can be matrices.

In order to satisfy this, we will need 4 matrices, and we need matrices of order at least
4. For example, (4) are satisfied by:

I 0 0 o,
ﬁ:(o Ij’a’:[oi oj(g)

10
where [ = (0 1) and the Pauli matrices

(0 1) [O —ij (1 Oj
0, = » O, =1 . » 03 = (7
1 O i 0 0 -1

satisfying {Gi,GJ. = 25ij}.
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This solution is called the Dirac representation. There are other choices of 4x4
matrices possible, but they all give the same physics. You don’t need a representation
really — can instead work from the commutation equations, but this way is convenient.

So the Dirac equation
oy
e —ia-Vy + fmy (9)
1s a matrix equation, as well as a differential equation, with a 4-component
wavefunction
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which is called a Dirac Spinor.

Since ¢, are hermitian, the adjoint equation (take the complex conjugate) is

—i

ES
aa"’t = +iV - (y * o) + my * B, (10)
where

ll/T (x) = (Wl *(x)’llfz *(x)’l//3 *(x),l//4 *(x)) .

3.1 Conserved Current
Usual argument: ¥ x(9)

iw*%—l’;—iw*g-iwwmw*w (a)
(10)xy
—iad—‘/fwﬂw* oy + Bmy "y (b)
a—b:
3—’;@-1: 0

where p=y'y, j=y oy

In particular,
p=y'y
=V, Yy YL, Yty Ry, >0
So this can be treated as a probability density in the usual way. We need to understand
the different components.



