
Relativistic Quantum Mechanics – Lecture 4 

1 

2.2 Conserved Current 
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 and j = !i " *#" ! #" *( )"$% &'  (cf. Schrödinger case). 

We now have that ! x( ) " # x,t( )
2 , and it can be either positive (for positive energy 

solutions) or negative (for negative energy solutions). 
!  is not a probability density (charge density?) 
 
Summary 
We have covariant theory with a conserved current, but we have problems with 
negative energies and with the interpretation of ! . 
 
Press on regardless with the positive energy solutions. 
 
2.3 EM Fields and the “H atom” 
If the potential Aµ

! 0 , then !µ " !µ + iqAµ  (which corresponds to pµ ! pµ " qAµ  
in the classical case). This gives us the form for the Klein-Gordon equation, 
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Here consider an electrostatic field, so A = 0  and V x( ) = qA
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For energy eigenvalues ! x( ) = " x( )e# iEt  (time independent solution), we have 
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Now consider V x( ) = !
Z"

r
 where r = x  and ! =

e
2

4"
=
1

137
. What are the energy 

levels? Solve by comparing to the non-relativistic H-like atoms. 
Time-Independent Schrödinger Equation (TISE): 
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. This gives us the radial Schrödinger Equation, 
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For the Klein-Gordon equation, using the same argument gives 
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This is of the same form with 2m! 2E , 2m! " E
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Use the non-relativistic energy levels from the Schrödinger equation, 
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E
2
! m

2
= !

2E Z"( )
2

2n '
2

E  

where 
 
n ' = n

r
+ ! '+1 . Solving this for E gives 

E = m 1+
Z!( )

2

n '
2

"

#
$
$

%

&
'
'

1
2

 

There are 2 interesting cases; 
1. Z!( )

2

<< 1 , a weak potential, i.e. Z << 137  
Expand in Z!  
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Here the first part is the rest energy, the second part is the same as the non-
relativistic result, and the third part is the fine structure – which is a relativistic 

correction because 
v

c
~ Z! . 

Fine structure is wrong for H! Schrödinger abandoned the KG equation. 
But it is right for spin-0 particles in a Coulomb field, e.g. pionic atoms !

"
p( )  

etc. 
Scalar KG equation describes spin-0 particles! 

2. 
 
Z! > ! + 1

2( )  

Z ! 69 , so we have a strong potential. 
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2  is complex – the energy is complex! 

Another disaster? To understand this, compare it with a simpler problem. 
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2.4 The Klein Paradox 
Consider a particle incident on an electrostatic barrier in one dimension. Have a 
potential step of height V , which starts at z = 0  and goes on in the +z  direction. 
Particle with kinetic energy E ! m  traveling in the +z direction. 
 
For z < 0 , time-independent equation 
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This has solutions ! z( ) = Aeipz + Be" ipz , with p2 = E2
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For z > 0 , 
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This has solutions ! = Ce
ip ' z  where p '2 = E !V( )
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! m
2 . We have imposed that there 

are no incoming particles / waves from the right. 
 
If E ! m( ) >V , p '2 > 0  and propagation will occur on the right z > 0( ) . 
If E ! m( ) <V , p '2 < 0 , so p ' = i p '  and we will get exponential decay for z > 0  
(“evanescence”). 
 

Boundary conditions: !  and 
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 are continuous at z = 0 . 
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Consider a conserved current. jz = !i " *#" ! #" *( )"$% &' , ! =" z( )e# iEt . 
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For the incident wave Aeipz   jI = 2p A
2 . 

For the reflected wave Be! ipz " j
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Hence j
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 as expected, with propagation if E !V
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