2.2 Conserved Current

$$\frac{\partial^2 \phi}{\partial t^2} = \left(\nabla^2 - m^2\right) \phi \quad (1)$$
$$\rightarrow \frac{\partial^2 \phi^*}{\partial t^2} = \left(\nabla^2 - m^2\right) \phi^* \quad (2)$$

 $\phi * x (1) - (2) x \phi$:

$$\rightarrow \frac{\partial \rho}{\partial t} + \underline{\nabla} \cdot \underline{j} = 0$$

 $\rightarrow \frac{\partial \rho}{\partial t} + \underline{\nabla} \cdot \underline{j} = 0$ where $\rho = i \left[\phi * \frac{\partial \phi}{\partial t} - \frac{\partial \phi^*}{\partial t} \phi \right]$ and $j = -i \left[\phi * \underline{\nabla} \phi - (\underline{\nabla} \phi^*) \phi \right]$ (cf. Schrödinger case).

We now have that $\rho(x) \neq |\phi(\underline{x},t)|^2$, and it can be either positive (for positive energy solutions) or negative (for negative energy solutions). ρ is not a probability density (charge density?)

Summary

We have covariant theory with a conserved current, but we have problems with negative energies and with the interpretation of ϕ .

Press on regardless with the positive energy solutions.

2.3 EM Fields and the "H atom"

If the potential $A^{\mu} \neq 0$, then $\partial_{\mu} \rightarrow \partial_{\mu} + iqA_{\mu}$ (which corresponds to $p_{\mu} \rightarrow p_{\mu} - qA_{\mu}$ in the classical case). This gives us the form for the Klein-Gordon equation,

$$\left(\partial_{\mu} + iqA_{\mu}\right)\left(\partial^{\mu} + iqA^{\mu}\right)\phi + m^{2}\phi = 0$$

Here consider an electrostatic field, so $\underline{A} = 0$ and $V(\underline{x}) = qA_0(\underline{x})$.

$$\left[\left(\frac{\partial}{\partial t}+iV\right)^2-\underline{\nabla}^2+m^2\right]\phi(\underline{x},t)=0$$

For energy eigenvalues $\phi(x) = \psi(\underline{x})e^{-iEt}$ (time independent solution), we have

$$\left[-\left(E-V\right)^{2}+\nabla^{2}+m^{2}\right]\psi(\underline{x})=0$$

(cf the Schrödinger equation $(E - V)\psi = -\frac{\nabla^2}{2m}\psi$)

Now consider $V(\underline{x}) = -\frac{Z\alpha}{r}$ where $r = |\underline{x}|$ and $\alpha = \frac{e^2}{4\pi} = \frac{1}{137}$. What are the energy

levels? Solve by comparing to the non-relativistic H-like atoms. Time-Independent Schrödinger Equation (TISE):

$$\left[-\nabla^2 - 2m\frac{Z\alpha}{r}\right]\psi = 2m\varepsilon\psi$$

where $\varepsilon = E - mc^2$. Write $\psi(\underline{x}) = \frac{U(r)}{r} Y_{\ell m}(\theta, \phi)$, where ℓ, m are angular momentum

eigenstates, and use $\nabla^2 = \frac{1}{r} \frac{\partial^2}{\partial r^2} r - \frac{\hat{L}^2}{r^2}$. This gives us the radial Schrödinger Equation,

$$\left[-\frac{d^2}{dr^2} + \frac{\ell(\ell+1)}{r^2} - \frac{2mZ\alpha}{r}\right]U(r) = 2m\varepsilon U(r)$$

For the Klein-Gordon equation, using the same argument gives

$$\left[-\frac{d^{2}}{dr^{2}} + \frac{\left(\ell(\ell+1) - Z\alpha\right)^{2}}{r^{2}} - \frac{2EZ\alpha}{r}\right]U(r) = \left(E^{2} - m^{2}\right)U(r)$$

This is of the same form with $2m \rightarrow 2E$, $2m\epsilon \rightarrow E^2 - m^2$ and

$$\ell \rightarrow \ell' = -\frac{1}{2} + \sqrt{\left(\ell + \frac{1}{2}\right)^2 - \left(Z\alpha\right)^2}$$

Use the non-relativistic energy levels from the Schrödinger equation,

$$2m\varepsilon = -2\frac{m(Z\alpha)^2}{2n^2}m$$

where $n = n_r + \ell + 1$. Making the substitutions from above, you get

$$E^{2} - m^{2} = -\frac{2E(Z\alpha)^{2}}{2n^{2}}E$$

where $n' = n_r + \ell' + 1$. Solving this for E gives

$$E = m \left[1 + \frac{\left(Z\alpha\right)^2}{n^{1/2}} \right]^{\frac{1}{2}}$$

There are 2 interesting cases;

1. $(Z\alpha)^2 \ll 1$, a weak potential, i.e. $Z \ll 137$ Expand in $Z\alpha$

$$\ell' = \ell - \frac{(Z\alpha)^2}{2(\ell + \frac{1}{2})} + \dots$$
$$E = m \left[1 - \frac{(Z\alpha)^2}{2n^2} - \frac{(Z\alpha)^4}{2n^4} \left(\frac{n}{\ell + \frac{1}{2}} - \frac{3}{4} \right) + \dots \right]$$

Here the first part is the rest energy, the second part is the same as the non-relativistic result, and the third part is the fine structure – which is a relativistic correction because $\frac{v}{c} \sim Z\alpha$.

Fine structure is wrong for H! Schrödinger abandoned the KG equation. But it is right for spin-0 particles in a Coulomb field, e.g. pionic atoms $(\pi^- p)$ etc.

Scalar KG equation describes spin-0 particles!

2. $Z\alpha > (\ell + \frac{1}{2})$ $Z \ge 69$, so we have a strong potential. $\ell' = -\frac{1}{2} + \sqrt{(\ell + \frac{1}{2})^2 - (Z\alpha)^2}$ is complex – the energy is complex!

Another disaster? To understand this, compare it with a simpler problem.

2.4 The Klein Paradox

Consider a particle incident on an electrostatic barrier in one dimension. Have a potential step of height V, which starts at z = 0 and goes on in the +z direction. Particle with kinetic energy E - m traveling in the +z direction.

For z < 0, time-independent equation

$$\left[-E^2 - \frac{d^2}{dz^2} + m^2\right]\psi(z) = 0$$

This has solutions $\psi(z) = Ae^{ipz} + Be^{-ipz}$, with $p^2 = E^2 - m^2$.

For z > 0,

$$\left[-(E-V)^{2} - \frac{d^{2}}{dz^{2}} + m^{2}\right]\psi(z) = 0$$

This has solutions $\psi = Ce^{ip'z}$ where $p'^2 = (E - V)^2 - m^2$. We have imposed that there are no incoming particles / waves from the right.

If (E-m) > V, $p'^2 > 0$ and propagation will occur on the right (z > 0). If (E-m) < V, $p'^2 < 0$, so p' = i|p'| and we will get exponential decay for z > 0 ("evanescence").

Boundary conditions: ψ and $\frac{d\psi}{dz}$ are continuous at z = 0. $\Rightarrow B = \frac{p - p'}{p + p'}A$, $C = \frac{2p}{p + p'}A$. Consider a conserved current. $j_z = -i[\phi * \nabla \phi - (\nabla \phi *)\phi]$, $\phi = \psi(z)e^{-iEt}$. $\Rightarrow -i[\psi * \frac{\partial \psi}{\partial z} - (\frac{\partial \psi *}{\partial z})\psi]$

For the incident wave $Ae^{ipz} \rightarrow j_I = 2p|A|^2$. For the reflected wave $Be^{-ipz} \rightarrow j_R = -2p|B|^2$ For the transmitted wave $Ce^{ip'z} \rightarrow j_T = \begin{cases} 2p'|C|^2 & p'^2 > 0, real p'\\ 0 & p'^2 < 0, imaginary p' \end{cases}$ Hence $j_I + j_R = j_T$ as expected, with propagation if $E - V^2 > m^2$ and evanescence if $(E - V)^2 < m^2$.