Relativistic Quantum Mechanics — Lecture 4

2.2 Conserved Current
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We now have that p(x) # [¢(x.7)

solutions) or negative (for negative energy solutions).
p 1s not a probability density (charge density?)

where p = i[q) *
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Summary
We have covariant theory with a conserved current, but we have problems with
negative energies and with the interpretation of ¢ .

Press on regardless with the positive energy solutions.

2.3 EM Fields and the “H atom”
If the potential A" #0, then d, — d, +igA, (which corresponds to p, — p, —qA,

in the classical case). This gives us the form for the Klein-Gordon equation,
(0, +iqA, )(0" +igA* )¢+ m*¢=0
Here consider an electrostatic field, so A=0 and V(x)=gA,(x).
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For energy eigenvalues ¢(x) =y (x)e
[—(E=V)'+V*+m’ Jy(x)=0

(time independent solution), we have
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Now consider V(x)=-== where r=|x| and o = :— = —— . What are the energy
r n

levels? Solve by comparing to the non-relativistic H-like atoms.
Time-Independent Schrédinger Equation (TISE):
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where € = E—mc*. Write y(x)= ) Y, (0,0), where ¢,m are angular momentum
r
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eigenstates, and use V° = ——r ——-. This gives us the radial Schrédinger Equation,

ror r
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{ 4 (0+1) 2mZa

2t ; }U(r)=2m£U(r)

For the Klein-Gordon equation, using the same argument gives
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This is of the same form with 2m — 2E, 2me — E* —m” and

f—>e':—%+\/(z+%)2—(2a)z .

Use the non-relativistic energy levels from the Schrodinger equation,
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where n=n_+ (+1. Making the substitutions from above, you get
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where n'=n_+ ('+1. Solving this for E gives
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There are 2 interesting cases;

1.

(Zor)* <<1, a weak potential, i.e. Z << 137
Expand in Za
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Here the first part is the rest energy, the second part is the same as the non-
relativistic result, and the third part is the fine structure — which is a relativistic

0=0-

. 1%
correction because — ~ Zox .
c

Fine structure is wrong for H! Schrédinger abandoned the KG equation.
But it is right for spin-0 particles in a Coulomb field, e.g. pionic atoms (7:_ p)

etc.
Scalar KG equation describes spin-0 particles!
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Z 269, so we have a strong potential.

0= —% + \/(E + %)2 —(Za)’ is complex — the energy is complex!

Another disaster? To understand this, compare it with a simpler problem.
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2.4 The Klein Paradox

Consider a particle incident on an electrostatic barrier in one dimension. Have a
potential step of height V , which starts at z=0 and goes on in the +z direction.
Particle with kinetic energy E —m traveling in the +z direction.

For z <0, time-independent equation
d2
{—Ez——i"*mz}ﬂﬁ)=0
dz
This has solutions y(z)= Ae” + Be ™™, with p* = E* —m”.

For z>0,
, d’
(E-V) et (a) =0

This has solutions y = Ce”* where p” =(E—V)’ —m?*. We have imposed that there
are no incoming particles / waves from the right.

If (E-m)>V, p” >0 and propagation will occur on the right (z>0).
If (E-m)<V, p?<0,s0 p'=i|p| and we will get exponential decay for z >0
(“evanescence”).

. d .
Boundary conditions: ¥ and d—w are continuous at z=0.
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Consider a conserved current. j, =—i[¢*Vo—(Vo*)¢], o=y (z)e ™.
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For the incident wave Ae™ > j, =2p|A[".

For the reflected wave Be ™ — j, = —2p|B[’

. - 2p'lcf ?>0, real p'
For the transmitted wave Ce” * — j, = p'lC] 217 real p
0 p'~ <0, imaginary p'
Hence j, + j, = j, as expected, with propagation if E—V? >m’ and evanescence if

(E-V) <m®.



