1.2 Some Quantum Mechanics

1.2.1 The Interpretation of the Wave Function

Before, used $\rho(\underline{x}, t) d^{3} x=|\psi(\underline{x}, t)|^{2} d^{3} x$ to get the probability of finding a particle in volume $d^{3} x$ at \underline{x} at time t. (Assuming normalized ψ.) This requires:

1. $\rho(\underline{x}, t)=|\psi|^{2} \geq 0$
2. For a single particle, $\int \rho(\underline{x}, t) d^{3} x=\int|\psi(\underline{x}, t)|^{2} d^{3} x=1$ at any time t, and hence $\frac{\partial}{\partial t} \int \rho(\underline{x}, t) d^{3} x=\frac{\partial}{\partial t} \int|\psi(\underline{x}, t)|^{2} d^{3} x=0$ (1) to conserve probability.

Hence we need to show:

$$
\frac{\partial \rho}{\partial t}+\underline{\nabla} \cdot \underline{j}=0
$$

(Equation of continuity), where \underline{j} is a corresponding current density.
Consider the Schrödinger Equation.

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V(\underline{x}) \psi \tag{1}
\end{equation*}
$$

Taking its conjugate:

$$
\begin{equation*}
-i \hbar \frac{\partial \psi^{*}}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi^{*}+V(\underline{x}) \psi^{*} \tag{2}
\end{equation*}
$$

Multiply (1) by ψ^{*}, and then subtract (2) multiplied by ψ.

$$
i \hbar\left(\psi * \frac{\partial \psi}{\partial t}+\frac{\partial \psi^{*}}{\partial t} \psi\right)=-\frac{\hbar^{2}}{2 m}\left(\psi^{*} \nabla^{2} \psi-\psi \nabla^{2} \psi^{*}\right)
$$

i.e.

$$
\frac{\partial}{\partial t}\left(\psi^{*} \psi\right)=\frac{i \hbar}{2 m} \underline{\nabla} \cdot\left(\psi^{*} \underline{\nabla} \psi-\psi \underline{\nabla} \psi^{*}\right)
$$

which is of the desired form, where $\rho(\underline{x}, t)=|\psi(\underline{x}, t)|^{2} \geq 0$ and

$$
\underline{j}=\frac{i \hbar}{2 m}\left(\psi \underline{\nabla} \psi^{*}-\psi^{*} \underline{\nabla} \psi\right) .
$$

The continuity equation implies that

$$
\frac{\partial}{\partial t} \int_{\text {all space }}|\psi(\underline{x}, t)|^{2} d^{3} x=0
$$

So the conditions for the Born interpretation are satisfied.

1.2.2 Minimal EM Interactions

Point particle with mass m and charge q at position \underline{x} in an EM field (ϕ, \underline{A}). We want to know what the QM equation of motion for this particle is.

Start from the classical Hamiltonian,

$$
H(\underline{x}, \underline{p})=\frac{1}{2 m}\left(\underline{p}-\frac{q}{c} \underline{A}\right)^{2}+q \phi
$$

To verify this, check Hamilton's Equations of Motion (using equations for many particles in places).

1. $\dot{x}_{i}=\frac{\partial H}{\partial p_{i}}=\frac{1}{2 m} 2\left(p_{i}-\frac{q}{c} A_{i}\right)$
i.e. the conjugate momentum $p_{i}=m \dot{x}_{i}+\frac{q}{c} A_{i}$, i.e. $\underline{p}=m \underline{\dot{x}}+\frac{q}{c} \underline{A}$ (2)
2. $\dot{p}_{i}=-\frac{\partial H}{\partial x_{i}}$ (somewhat tricky derivation)

$$
m \underline{\ddot{x}}=q \underline{E}+\frac{q}{c} \underline{v} \times \underline{B}
$$

Note that (1) + (2) implies that the energy is

$$
H(\underline{x}, \underline{p})=E(\underline{x}, \underline{\dot{x}})=\frac{1}{2} m \underline{\dot{x}}^{2}+q \phi
$$

Note that there is no contribution from the magnetic field, as it is at right angles to the particle and hence can't do any work on it.

Schrödinger Equation:

$$
H(\underline{x}, \underline{\hat{p}}) \psi=i \hbar \frac{\partial \psi}{\partial t}
$$

where $\underline{p} \rightarrow \underline{\hat{p}}=-i \hbar \underline{\nabla}($ position operator is still $\underline{x})$.

$$
-\frac{\hbar^{2}}{2 m}\left(\underline{\nabla}-\frac{i q}{\hbar c} \underline{A}\right)^{2} \psi(\underline{x}, t)=i \hbar\left(\frac{\partial}{\partial t}+\frac{i q}{\hbar} \phi\right) \psi(\underline{x}, t)
$$

which is related to the "free" equation

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=i \hbar \frac{\partial \psi}{\partial t}
$$

by the minimal substitution

$$
\begin{aligned}
\underline{\nabla} & \rightarrow \underline{\nabla}-\frac{i q}{\hbar c} \underline{A} \\
\frac{\partial}{\partial t} & \rightarrow \frac{\partial}{\partial t}+\frac{i q}{\hbar} \phi
\end{aligned}
$$

Or in 4D notation,

$$
\partial_{\mu} \rightarrow \partial_{\mu}+\frac{i q}{\hbar c} A_{\mu}(x)
$$

(This combines the two substitutions before.)
The same argument works in the relativistic case.

$$
H=\sqrt{(c \underline{p}-q \underline{A})^{2}+m^{2} c^{4}}+q \phi
$$

Hence the "Schrödinger equation" is

$$
\left(\sqrt{-\hbar^{2} c^{2}\left(\underline{\nabla}-\frac{i q}{\hbar c} \underline{A}\right)^{2}+m^{2} c^{4}}\right) \psi(\underline{x}, t)=i \hbar\left(\frac{\partial}{\partial t}+\frac{i q}{\hbar} \phi\right) \psi(\underline{x}, t)
$$

Again this is obtained from the free particle case by (3). Note that in the non-EM case, the first bit would form $\sqrt{p^{2} c^{2}+m^{2} c^{4}}$.

Problem:- how do we interpret $\sqrt{ }$, or in the free case $\sqrt{-\hbar^{2} c^{2} \nabla^{2}+m^{2} c^{4}}$? We will come to this later.

1.3 Natural Units

Use natural units, such that $\hbar=c=1$. So the unit of speed is the speed of light, and the unit of momentum is \hbar.

It's easy to put this in; the tricky bit is to get back to ordinary units. So use dimensions to restore \hbar, c, and then use

$$
\begin{aligned}
& \hbar=6.582 \times 10^{-22} \mathrm{MeV} \mathrm{sec} \\
& \hbar c=1.973 \times 10^{-13} \mathrm{MeV} \mathrm{~m} .
\end{aligned}
$$

(See Martin \& Shaw PP, section 1.5)

2. The Klein-Gorden Equation

Using free space, so $(\phi, \underline{A})=0$, and natural units. So the Schrödinger Equation is

$$
H \phi(\underline{x}, t)=i \frac{\partial \phi(\underline{x}, t)}{\partial t}(1)
$$

where ϕ is now the wave function, and $H=\sqrt{-\underline{\nabla}^{2}+m^{2}}$ (2). What does this mean? In the Klein-Gordon (KG) equation, we avoid the problem by noting that H is independent of t, so we can multiply the equation by H again.

$$
H^{2} \phi(\underline{x}, t)=i \frac{\partial}{\partial t} H \phi=-\frac{\partial^{2} \phi}{\partial t^{2}}
$$

then using $H^{2}=-\underline{\nabla}^{2}+m^{2}$,

$$
\begin{gather*}
\left(\frac{\partial^{2}}{\partial t^{2}}-\underline{\nabla}^{2}+m^{2}\right) \phi(\underline{x}, t)=0 \tag{3a}\\
\left(\square+m^{2}\right) \phi(\underline{x}, t)=0 \tag{3b}
\end{gather*}
$$

where $\square=\partial_{\mu} \partial^{\mu}$. This is called the Klein-Gordon Equation. This is the correct equation, but what is its interpretation?

There are a whole series of problems.

2.1 Negative Energies

KG equation has solutions

$$
\phi(\underline{x}, t)=e^{i(\underline{p} \underline{\underline{x}} \underline{\underline{x}}-E t)}
$$

with $\mathrm{E}^{2}=\underline{p}^{2}+m^{2}$, i.e. with energies $E=+\sqrt{\underline{p}^{2}+m^{2}} \geq m^{2}>0$, and $E=-\sqrt{p^{2}+m^{2}} \leq m^{2}<0$.
So we have a spectrum of energies available at $E>m c^{2}$ and $E<-m c^{2}$, with an energy gap in the middle. Classical particles can't jump this energy gap. Quantum mechanics say that interaction can cause quantum jumps releasing or absorbing quanta $\hbar \omega \geq 2 m c^{2}$, either as radiation or as other particles.
So a particle can fall to negative energy states etc. releasing an infinite amount of energy. What stops it?

