Derivatives

Consider a Lorentz scalar $\phi(x) . \phi^{\prime}\left(x^{\prime}\right)=\phi(x)$. Through a $1^{\text {st }}$-order Taylor expansion,

$$
\phi(x+\delta x)-\phi(x)=\delta \phi=\frac{\partial \phi(x)}{\partial x^{\mu}} \delta x^{\mu}
$$

$\delta \phi$ is a Lorentz scalar, δx^{μ} is a contravarient 4 -vector, so $\frac{\partial}{\partial x^{\mu}}$ is a covariant vector. Therefore

$$
\partial_{\mu} \phi \equiv \frac{\partial \phi}{\partial x^{\mu}}=\left(\frac{1}{c} \frac{\partial \phi}{\partial t}, \nabla \phi\right)
$$

is a covariant 4 -vector. Similarly,

$$
\partial^{\mu} \phi=\frac{\partial \phi}{\partial x_{\mu}}=\left(\frac{1}{c} \frac{\partial \phi}{\partial t},-\nabla \phi\right)
$$

is a contravarient 4 -vector, and

$$
\square \equiv \partial_{\mu} \partial^{\mu}=\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right)
$$

is a scalar operator. For example, $\square \phi=\partial_{\mu} \partial^{\mu} \phi=0$ is the wave equation

$$
\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}-\nabla^{2} \phi=0
$$

1.1.1 Equation of Continuity

Consider any charge density $\rho(x)$ such that the charge within a volume Ω is

$$
Q_{\Omega}=\int_{\Omega} d \nu \rho(x)
$$

is unchanged by a Lorentz transformation (i.e. it is a scalar). Then it can be shown that

$$
J^{\mu}(x)=(c \rho, \underline{j})
$$

where \underline{j} is the associated current, $\underline{j}=\rho \underline{v}$, is a 4-vector. i.e. $J^{\mu} \rightarrow J^{\prime \mu}=\Lambda^{\mu}{ }_{v} J^{v}$ under a Lorentz transformation. The charge is conserved provided that the equation of continuity

$$
\begin{equation*}
\partial_{\mu} J^{\mu}(x)=0 \tag{1}
\end{equation*}
$$

is satisfied. This is an explicitly covariant equation. To se this, rewrite (1):

$$
\frac{\partial \rho}{\partial t}+\underline{\nabla} \cdot \underline{j}=0
$$

Then

$$
\begin{aligned}
\frac{\partial Q_{\Omega}}{\partial t} & =\frac{\partial}{\partial t} \int_{\Omega} d v \rho \\
& =-\int_{\Omega} \underline{\nabla} \cdot \underline{j} d v \\
& =-\int \underline{j} \cdot \underline{d s}
\end{aligned}
$$

the last stage of which is using the Divergence Theorem. Hence the rate of increase of the charge enclosed $=-$ the rate of flow of the charge, i.e. the current / flux, through the surface. So no charge is created or destroyed. In particular, if $\rho, \underline{j} \rightarrow 0$ at ∞,

$$
\frac{\partial Q}{\partial t}=\frac{\partial}{\partial t} \int d v \rho(x)=0 .
$$

1.1.2 Electromagnetic Field

(Free space, $\varepsilon, \mu=0$)
Maxwell's Equations (SI units):

$$
\begin{gathered}
\underline{\nabla} \cdot \underline{E}=\frac{1}{\varepsilon_{0}} \rho \\
\underline{\nabla} \cdot \underline{B}=0 \\
\underline{\nabla} \times \underline{E}=-\frac{\partial \underline{B}}{\partial t} \\
\underline{\nabla} \times \underline{B}=\mu_{0} \underline{j}+\mu_{0} \varepsilon_{0} \frac{\partial \underline{E}}{\partial t}
\end{gathered}
$$

In Rationalised Gaussian Units, $\mu_{0} \varepsilon_{0}=\frac{1}{c^{2}}$, so $\varepsilon_{0}=1$. Also redefine \underline{B} as $\frac{\underline{B}_{S I}}{c}$.

$$
\begin{gather*}
\underline{\nabla} \cdot \underline{E}=\rho \tag{1}\\
\underline{\nabla} \cdot \underline{B}=0 \tag{2}\\
\underline{\nabla} \times \underline{E}=-\frac{1}{c} \frac{\partial \underline{B}}{\partial t} \tag{3}\\
\underline{\nabla} \times \underline{B}=\frac{1}{c} \underline{j}+\frac{1}{c^{2}} \frac{\partial E}{\partial t} \tag{4}
\end{gather*}
$$

Also introduce the fine structure constant,

$$
\alpha=\frac{e^{2}}{4 \pi \hbar c}=\frac{1}{137}
$$

so to evaluate things with e, convert them to α.
Introduce the EM potentials ϕ and \underline{A} which satisfy

$$
\begin{gathered}
\underline{E}=-\underline{\nabla} \phi-\frac{1}{c} \frac{\partial \underline{A}}{\partial t} \\
\underline{B}=\underline{\nabla} \times \underline{A} .
\end{gathered}
$$

These guarantee that equations (2) and (3) are automatically satisfied.
If we write $A^{\mu}(x)=(\phi, \underline{A})(5)$, then (1) and (4) can be combined and written as

$$
\square A^{\mu}(x)-\partial^{\mu}\left(\partial_{v} A^{v}(x)\right)=\frac{1}{c} j^{\mu}(x)
$$

so the Principle of Relativity requires $A^{\mu}(x)$ to be a 4-vector, i.e.
$A^{\mu} \rightarrow A^{\prime \mu}=\Lambda^{\mu}{ }_{v} X^{v}$, as implied but not proven by (5).

