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3.7.2 H-like atoms 

Now have S r( ) = 0 , and V r( ) = !
Z"

r
 is the Coulomb potential, where we’re 

assuming q ! "e . We can solve this – see textbooks. We get: 
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Note that this doesn’t depend on  ! . 
 
There are 2 interesting limits. 
1. Strong potentials 

Z! > j + 1
2

 

j = 1
2

  Z > 137  
Here, E  is imaginary (cf. KG equation) 
In principle, we have the same as for the KG equation for Z > 69 ?( ) . This tells us that 
pair production can’t be ignored. In practice, there are no atoms with Z > 137 . 
 
2. Hydrogen Atom 

Z = 1, and expand in terms of ! =
1

137
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The 1 is the non-relativistic result; the second part is the relativistic corrections, 
including the spin-orbit terms, which are typically of order 10!5 . 
 
Consider the n = 2  levels. 

 
Experimentally: 

- Schrödinger equation + L !S  is incorrect 
- Dirac almost correct 
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But experimentally, 2S
1
2

 level shifted upwards by the “Lamb shift”, ! ~O "
3( )  

relative to the other relativistic corrections. This was a great discovery (1947)  
Nobel prize because is goes beyond the Dirac theory + hole theory. It is mainly due to 
quantum fluctuations of the EM field. 
 

For comparison, if we represent the interaction with a classical field !
Z"

r
 by 

 
 

The same effect causes g = 2  (Dirac)  g = 2 1+
!
2"

+ ...
#
$%
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. Both results have been 

confirmed experimentally to extraordinary precision. g ! 2  has been measured and 
calculated to an accuracy of 1 in 109 , in perfect agreement. To understand this, we 
need QFT. 
 
4. Quantum Fields 
4.1 Quantum Mechanics of a String 
Compare with a taut string. Take the dynamical variable as the transverse 
displacement ! z,t( ) . This satisfies the wave equation 
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where c =
T

µ
, where T  is the tension and µ  is the mass per unit length. The energy 

is 
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where the first term is the kinetic energy, and the second term is the potential energy. 
For simplicity, set T = 1, µ = 1   c = 1 . 
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like the KG equation with m = 0  but c = 1 = the speed of elastic waves. The energy 
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To describe traveling waves, impose periodic boundary conditions 
! t, z( ) = ! t, z + L( ) . (3) 

(we can take L!"  at the end) 
 
The normal modes are 

!
n
z,t( ) = e± i "nt# kn z( )  

where k
n
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2!n

L
 with n  an integer (from boundary condition), and !

n
= k

n
 to 

satisfy the wave equation. For a real string, take the real part of this. 
 
Note that at fixed z , each bit of the string performs simple harmonic motion, i.e. we 
have an infinite number of simple harmonic oscillators. 
 
Expand an arbitrary !  in terms of !

n
, where we want ! to be real; 
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 is there for later convenience. The first part is like positive energy, while 

the second part is like negative energy. 
 
Calculate the energy in terms of new variables a

n
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n
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(Note that everything in the brackets should be on the same line). 
Using orthogonality, 
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Similarly for the potential energy, 
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So the total energy (the Hamiltonian) is 
H = !
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Alternatively, introduce real variables 

q
n
=
a
n
+ a

n
*

2!
n

, pn = !i
"

n

2
a
n
! a

n
*( )  

! H =
1

2
p
n

2
+"

n

2
q
n

2( )
n

#  



PC 4602 – Relativistic Quantum Mechanics – Lecture 10 

4 

Consider the SHO in one dimension; 
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p
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We have an infinite sum of simple harmonic oscillators, which we can quantize. 


