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3.7.2 H-like atoms

Z .
Now have S(r)=0, and V(r):——a is the Coulomb potential, where we’re
r

assuming g = —e. We can solve this — see textbooks. We get:
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Note that this doesn’t depend on 7.

E =m|1+

There are 2 interesting limits.
1. Strong potentials

Za> j+ Y4
j=)5 > Z>137

Here, E is imaginary (cf. KG equation)
In principle, we have the same as for the KG equation for Z > 69(?). This tells us that

pair production can’t be ignored. In practice, there are no atoms with Z >137.

2. Hydrogen Atom

1
Z =1, and expand in terms of o = —.
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The 1 is the non-relativistic result; the second part is the relativistic corrections,
including the spin-orbit terms, which are typically of order 107 .
Consider the n =2 levels.

Schroedinger +L.S Dirac (L.S automatically included)

2s. 2P:

V]
t
3]
=
L3
(=3
o
S
L3
e~
=S

Experimentally:
- Schrodinger equation + L - S is incorrect

- Dirac almost correct
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But experimentally, ZSy level shifted upwards by the “Lamb shift”, o ~O(a3)
2

relative to the other relativistic corrections. This was a great discovery (1947) >
Nobel prize because is goes beyond the Dirac theory + hole theory. It is mainly due to
quantum fluctuations of the EM field.

. . . . . . Zo
For comparison, if we represent the interaction with a classical field ——— by
r

. o
The same effect causes g =2 (Dirac) > g= 2(1 + pye + j Both results have been
T

confirmed experimentally to extraordinary precision. g —2 has been measured and

calculated to an accuracy of 1 in 10°, in perfect agreement. To understand this, we
need QFT.

4. Quantum Fields
4.1 Quantum Mechanics of a String
Compare with a taut string. Take the dynamical variable as the transverse

displacement ¢(z,¢). This satisfies the wave equation
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where ¢ = |—, where T is the tension and u is the mass per unit length. The energy
u
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where the first term is the kinetic energy, and the second term is the potential energy.

For simplicity, set 7 =1, u=1 > c=1.
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like the KG equation with m =0 but ¢ =1=the speed of elastic waves. The energy
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To describe traveling waves, impose periodic boundary conditions
o(1,2)=9(t,2+L). (3)

(we can take L — oo at the end)

The normal modes are
(bn (Z,t) — et ti(w,r—k,z)

k
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where k = - with n an integer (from boundary condition), and @, = to

satisfy the wave equation. For a real string, take the real part of this.

Note that at fixed z, each bit of the string performs simple harmonic motion, i.e. we
have an infinite number of simple harmonic oscillators.

Expand an arbitrary ¢ in terms of ¢, , where we want ¢ to be real;
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is there for later convenience. The first part is like positive energy, while

The
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the second part is like negative energy.

Calculate the energy in terms of new variables a,,a, *. The “field velocity” is

Z ’ i(0,t=k,2) a, ” e—i(w”z—knz))
The kinetic energy (at t=0)1is
L[(20) goe s, [0
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(Note that everything in the brackets should be on the same line).
Using orthogonality,
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(a a_,—2a,*a,+a, *a_, *)
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Similarly for the potential energy,

—Jd( ) 4(aa +2a,*a,+a,*a_, )
So the total energy (the Hamiltonian) is
H = anan *a, .

Alternatively, introduce real variables
_4a,*aqa, * 0] (

\/_
—H= ;E(p"z +0,q,)
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Consider the SHO in one dimension;
2
1
H= P +—w’x*.

We have an infinite sum of simple harmonic oscillators, which we can quantize.



