
Relativistic Quantum Mechanics – Lecture 1 
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Particles are conserved. 
What about relativistic? 
Quantum Mechanics + Relativity (Special) 
Get some new big ideas: 

- Understanding of electron spin, magnetic moment 
- Prediction of antiparticles 
- Spin-statistics theorem 
- Etc… 

Eventually leads to quantum field theory QFT. 
Take first steps. 
Roughly divided into two parts: 

1. T ! E " mc
2
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2  but T !
1

2
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2  

No particle creation 
Described by “Relativistic Quantum Mechanics” 

2. T = E ! mc
2
> mc

2  
Highly relativistic situation 
Sufficient energy for particle creation 
Need the full works of QFT. 

 
Note: photons are always in region 2. (First QFT was for photons [electromagnetic 
field].) 
 
In this course – treat (1), and the first steps of (2). 
 
1. Preliminaries 
1.1 Relativistic Notation 
(Mandl & Shaw, 2.1) 
Introduce contravarient 4-vectors. 
X

µ , µ = 0,1,2,3  
with X 0

,X
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3( ) = ct, x, y, z( ) = ct, x( )  (1) 
and metric tensor gµ!  defined by 
g
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22
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gµ! = 0  if µ ! " . (2) 
Define the covariant 4-vector. 
Xµ = gµ!X

!  with implied sum over repeated indices. (3) 
Implies that Xµ = ct,!x( ) . (4) 

Define the contravarient metric tensor gµ!  by g!µ
gµ" = g

!

"
= #

!

"
 (5) 

Where ! "

#
= 1  if ! = " , 0  otherwise. 

Then from Xµ = gµ!X
! , we have 

 

g
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! , i.e. X!
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In general, use g!µ  to raise an index, and g
!"

 to lower an index. 
From (2) and (6), we have g!µ

= g
!µ  (numerically) (7) 

 
Homogenous Lorentz Transformations 
Homogenous: x,t = 0! x ',t ' = 0 . 
These are of the general form 
X

µ
! X '

µ
= "

µ

#
X

#  (8) 
where !µ

"
 are real and depend on the relative velocity and orientation of the frames. 

Together with (3) and (6), 
xµ ! xµ ' = "µ

#
x
#

 (9) 

where !µ

"
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$
g
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(Note: x ! X ) 
 
Lorentz transformation leaves the interval s2 = xµ

xµ = c
2
t
2
! x

2   (11) invariant, i.e. 

X '
µ
X 'µ = X

µ
Xµ . 

Using (8) and (9), X 'µ X 'µ = !
µ

"
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#
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Xµ  implies that !µ
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s
2  is an example of a Lorentz scalar. 

 
A 4-component object Aµ

,B
µ
,...  which transforms like X µ  under a Lorentz 

transformation, e.g. Aµ
! A '

µ
= "

µ

#
A

µ  (13), is a contravariant 4-vector. 
(13) implies Aµ = gµ!A

!
" A 'µ = #µ

!
A
!
 (14) (a covariant 4-vector) 

 
The scalar product of any two 4-vectors AB = AµB

µ
= A

0
B
0
! A " B  can be written in a 

variety of ways 
AB = AµB

µ
= g

µ!
AµB!

= gµ!A
µ
B

!
= A

µ
Bµ  (15) 

and is Lorentz invariant since A 'µ B 'µ = A
µ
Bµ  by (12-14). 

 
Example: the energy-momentum or four-momentum vector. 
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For single particles, 
E
2

c
2
! p

2

= m
2
c
2  where m  is the rest mass. 

Or P2 = Pµ
Pµ = m

2
c
2  

This is an example of an explicitly covariant equation since PµP
µ
= P 'µ P '

µ  and hence 

P
2
= P 'µ P '

µ
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2
c
2  in a transformed frame. 

 
All the equations written consistently in terms of 4-vectors and scalars (and tensors, 
but they won’t be needed in this course) automatically are Lorentz Invariant. 
If the quantities are physical quantities, the equations automatically satisfy the 
Principle of Special Relativity. 


