LEP (1989 – 2000) e^+e^- at CERN. Circumference 26, 256, 883mm (1mm change \rightarrow 10MeV change in energy of electrons) Detects TGV (French express train) electric train – affects magnets. Detects water level in lake Geneva – gravitational pull of the water on land. Detects moon – gravity.

LEP phase 1 (1989 – 1995) e^+e^- each with ~50GeV, giving $E_{cm} \leq 100 GeV$. $\sigma_{tot}(e^-e^+ \rightarrow anything)$ $\sigma_{_{tot}}$ Ζ J/ψ $E_{cm}(GeV)$ 10 100 2 e^+ Z^0 Z^0 J/ψ $M_{z} = 91.2 GeV$ $E_{e^+} = E_{e^-} = 45.6 GeV$

 \rightarrow Real Z⁰ production

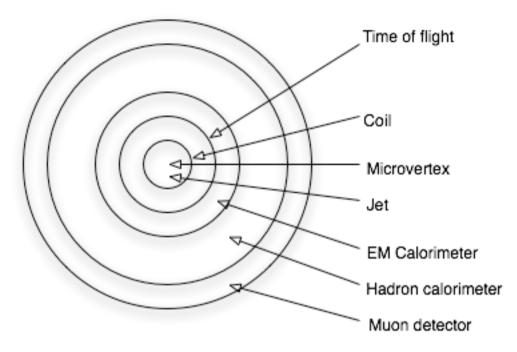
<u>LEP Phase 2</u> (1996 – December 2000)

 e^+e^- each with ~100GeV.

Why?

- a. At $E_{cm} \ge 160 GeV$, can produce pairs of real W^{\pm} ($M_{W^{\pm}} \sim 80.4 GeV$
- b. Want to get highest possible energy to see what happens.
 - Higgs
 - Supersymmetry
 - Unexpected (outside Standard Model)

Experiments


Experiments are normally multipurpose.

 4π detectors – try to detect everything and then interpret.

LEP had 4 interaction points \rightarrow competing, but each had their own speciality. E.g. lepton detection – cannot be optimistic for detecting everything.

<u>OPAL</u>

Omni Purpose Apparatus LEP

Microvertex: Si solid state charged particles $\leq 5\mu m$ precision. Jet: gas detector. Charged particles – electrons drift to anode – timing drift time \rightarrow position – track of charged particles.

Coil: magnetic field. Bends charged particles \rightarrow sign of charge \rightarrow momentum.

Time of flight – scintillator counters – charged particles \rightarrow velocity 4 momentum from coil \rightarrow mass.

Electromagnetic calorimeter

- Detects $e^+e^-\gamma$
- Electromagnetic shower from Bremsstrahlung
- Energy measured by Cerenkov radiation.
- Uses Lead Glass helps Bremsstrahlung
- Can't detect μ as Bremsstrahlung $\propto mass^{-4}$.
- Energy $\frac{1}{2}$ of initial energy in I X_0 .
- Lead glass is $24 X_0$ wide.

Hadron Calorimeter

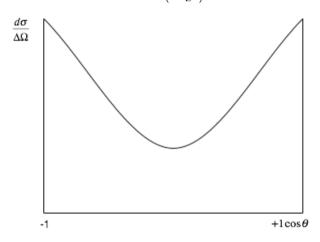
- Hadrons: π , K, P, J/ψ
- Particle comes in, strikes iron layer and turns into a hadronic shower through the strong interaction. Detector finds particles. Iron \rightarrow detector \rightarrow iron ...

Only μ and τ are left.

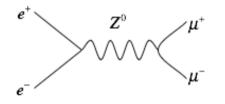
Muon Detector:

- Drift chamber •
- For charged particles, gets the position and track \rightarrow muons. •

 τ are not detected as they decay too quickly – have to reconstruct.

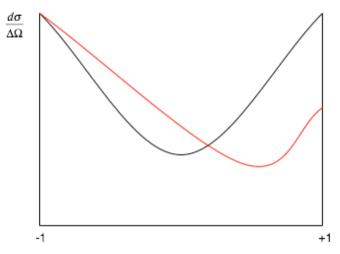

 $\frac{Z^0}{Z^0}$, W^{\pm} - Mediators of Weak Interaction $\overline{Z^0}$ neutral – couples to quarks and leptons.

Also, γ neutral – couples to quarks and leptons.


Electroweak unification: $Z^0 \equiv \gamma$ at energies $\geq 100 GeV$ (distances $\leq 10^{-18} m$, the range of weak)

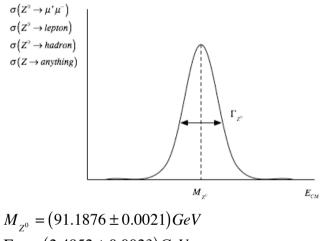
Consider e^+e^- annihilation.

At energies $\ll 100 GeV (M_{z^0})$, γ is the dominant process.


At $E = M_{z^0}$ (100GeV), Z^0 resonance is produced.

At $E > M_{z^0}$, get:

Interference Effect



Higher probability of backward production.

Asymmetry =
$$\frac{N_F - N_B}{N_F + N_B}$$

 $\mu^+\mu^-$ - asymmetry at energies $\leq 43.7 GeV \rightarrow$ evidence for virtual Z^0 and prediction of Z^0 mass of 93GeV (known now to be ~91.6 GeV)

Don't use e^-e^+ detection as can't distinguish from elastic scattering.

$$\Gamma_{z^0} = (2.4952 \pm 0.0023) GeV$$

$$\Delta E \Delta t \sim \hbar : \Delta E \equiv \Gamma_{Z^0}, \ \Delta t = \tau_{Z^0}$$
$$\rightarrow \tau_{Z^0} = 10^{-25} s$$

 Z^0 cannot have any momentum due to the experimental setup \rightarrow stationary \rightarrow at rest energy \rightarrow can only have one energy for Z^0 .