CP Violation & BaBar, Continued Lecturer: Nick Barlow

Recap:

• Weak and flavour eigenstates of quarks are related by

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = V_{CKM} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

where V_{CKM} is the 3x3 unitary CKM matrix. As unitary \rightarrow Unitarity triangle

• Neutral mesons can "mix"

$$\frac{N_{unmix} - N_{mix}}{N_{unmix} + N_{mix}} = \cos(\Delta m t)$$

where Δm is the mass difference between 2 mass eigenstates. K_s , K_L , B_H , B_L

- How to measure Δm_B
 - Measure Δt between B decays Asymmetric beam energies, SVT
 - Identify whether B^0 or \overline{B}^0 "Flavour tagging"
- 3 types of CPV in B decays

CPV in mixing

$$(P(B^{0} \rightarrow \overline{B}^{0}) \neq P(\overline{B}^{0} \rightarrow B^{0})$$

 $\left|\frac{q}{p}\right| \neq 1$

- CPV in decay

$$P(B \to f) \neq P(\overline{B} \to \overline{f})$$

 $\left|\frac{\overline{A}}{A}\right| \neq 1$

- CPV in interference between decays with and without mixing $B^0 \rightarrow f_{cp}$

$$B^{0} \to \overline{B}^{0} \to f_{cp}$$
$$\operatorname{Im}(\lambda) \neq 0$$
$$\lambda = \eta \left(\frac{q}{p}\right) \left(\frac{\overline{A}}{A}\right)$$

PC4521 - Frontiers of Particle Physics - Lectures 11 & 12

• Time dependent asymmetry

$$Asym(\Delta t) = \frac{\Gamma(B^{0}(\Delta t) \to f_{cp}) - \Gamma(\overline{B}^{0}(\Delta t) \to f_{cp})}{\Gamma(B^{0}(\Delta t) \to f_{cp}) + \Gamma(\overline{B}^{0}(\Delta t) \to f_{cp})}$$
$$= \frac{(1 - |\lambda|^{2})\cos(\Delta m_{B}\Delta t) - 2\operatorname{Im}(\lambda)\sin(\Delta m_{B}\Delta t)}{1 + |\lambda|^{2}}$$
$$= -\operatorname{Im}(\lambda)\sin(\Delta m_{B}\Delta t) \text{ if } |\lambda| = 1$$

Measuring $\sin 2\beta$

 β is the angle of the Unitarity Triangle.

- Measure using "golden channel" $B \rightarrow J / \psi K_s$
 - J/ψ is $c\overline{c}$ "charmonium". Decays to $\ell^+\ell^-$ 12% of the time.
- Why so good?
 - \circ B.F. not so small (~ 10⁻³)
 - Clear experimental signature (low background)
 - o Theoretically clean

- How do we measure it?
 - Reconstruct $B \rightarrow (J / \Psi) K_s$ decay
 - Measure Δt between B-decays
 - \circ Flavour tag other *B* in the event.
- Reconstructing $(J/\psi)K_s$
 - $(J/\psi) \rightarrow e^+e^-$ or $\mu^+\mu^-$ 12% of the time.
 - Charged leptons will leave tracks in the tracking system (SVT and DCH).
 - Locate (J/ψ) (therefore *B*) decay vertex in SVT
 - Measure momentum using DCH Combine 4-momenta, to get J/ψ "candidate".
 - $K_s \to \pi^+ \pi^-$ 68% of the time (the rest of the time, it goes to $\pi^0 \overline{\pi}^0$)
 - Pions leave tracks in SVT and DCH.
 - K_s has $c\tau \sim 2.7cm$ so decay vertex will be displaced from the interaction region this helps reduce background.
 - Measure momentum, combine to get K_s candidate.
 - Add 4-momenta of (J/ψ) and K_s candidates to get *B*-candidate.
- Put it all together.
 - Plot Δt distributions for events with B^0 tag and events with \overline{B}^0 tag.

- Experimental complications
 - Imperfect Δt resolution function $R(\Delta t)$
 - Non-zero mistag fraction w
 - Backgrounds

- Can also use other "charmonium" decay modes e.g. $\psi(2s)K_s$, $(J/\psi)K_L$, $\eta_c K_s$
- In 2001, both BABAR and Belle measured sin 2β to be > 3σ from 0.
 o First observation of CP violation outside Kaon system.
- Measurement now quite precise. Current world average: $\sin 2\beta = 0.687 \pm 0.032$
- Excellent agreement with standard model expectation.

Measuring α

$$\alpha = \arg\left[-\frac{V_{td}V_{tb}*}{V_{cd}V_{cb}*}\right]$$

Use decays with $b \to u\bar{u}d$ transition, e.g. $B \to \pi^+\pi^-$ or $B \to \rho^+\rho^-$ If only "tree" diagrams contribute

But, "penguin" diagram also expected.

Therefore expect interference \rightarrow direct CPV. $|\lambda| \neq 1$.

- Terms in both $\cos(\Delta m_B \Delta t)$ as well as $\sin(\Delta m_B \Delta t)$.
- Both must be fitted.

Also:

- BF (Branching Fraction) $B \rightarrow \pi^+ \pi^-$ is very small (~ 5×10⁻⁶)
- Much harder to remove background events.

Best BABAR value $(B \rightarrow \rho^+ \rho^-)$: $\alpha = (103 \pm 10)^\circ$

Measuring γ

Very difficult at B-factories.

$$\gamma = \arg \left[-\frac{V_{ud}V_{ub}*}{V_{cd}V_{cb}*} \right]$$

Use $B^{\pm} \to DK^{\pm}$ decays where *D* decays to final state accessible to both D^0 and \overline{D}^0 . Complicated analysis.

Current value from BABAR:

$$\gamma = \left(67 \pm \underbrace{28}_{statistical} \pm \underbrace{13}_{systematic} \pm \underbrace{11}_{theory}\right)^{\circ}$$

Measuring $\sin 2\beta$ in other decay channels

Can also use $b \to s\overline{su}$ or $b \to s\overline{u}u$ transitions. e.g. $B \to \phi K_s$

 ϕ is $s\overline{s}$, and decays to K^+K^- 50% of the time. Pure penguin decay – no tree diagram.

Therefore no direct CPV, $|\lambda| = 1$.

Any discrepancy between $\sin 2\beta$ in these modes and $\sin 2\beta$ in charmonium would be a sign of New Physics.

At the moment, naïve average gives 2.7σ discrepancy.

However, not all these modes are pure penguin, there may be some direct CPV. Still, one of most exciting areas in B-factories.

Tau Physics at BABAR

BABAR / PEPII is also a τ -factory.

Cross-section for τ pair production at CM energy 10.58*GeV* is 0.89*nb*. Therefore ~270 million $\tau^+\tau^-$ events in BABAR dataset.

 τ is the heaviest lepton $(m_{\tau} = 1.777 GeVc^{-2})$. It is the only lepton that can decay to hadrons as well as leptons.

85% of τ decays are to 1 charged track, and zero or more neutral particles.

- Look for events with one isolated charged track in hemisphere

Almost all other 15% decays are to 3 charged tracks plus zero or more neutrals.

Examples of τ analyses

- Charged current universality
 - Does the W couple equally to all leptons?
 - Need to measure $BF(\tau \rightarrow ev\overline{v})$, $BF(\tau \rightarrow \mu v\overline{v})$, and measure τ lifetime.
- Studies of light hadrons
 - Clean environment to study properties of e.g. ρ , K^* resonances
- Mass of τ neutrino
 - Neutrino oscillation measurements give mass differences, not absolute masses.
 - BABAR and Belle should be able to reduce upper limit on m_{y_e} .
- Lepton flavour violation
 - Neutrinoless Decays such as $\tau \to e\gamma$ or $\tau \to \mu\gamma$ are forbidden in standard model.
 - Observing these decays would be unambiguous sign of New Physics.
 - Look for events with 1 isolated track in one hemisphere, lepton and neutral EMC cluster in other hemisphere.
 - $\circ~$ Combine 4-momenta of lepton and gamma, see if result is consistent with $\tau~$ mass.
 - Need to rule out possibility of very low momentum neutrinos need to know energy resolution, background distributions very well.

• Latest results: $B.F.(\tau^{\pm} \rightarrow \mu^{\pm}\gamma) < 6.8 \times 10^{-8}$ $B.F.(\tau^{\pm} \rightarrow e^{\pm}\gamma) < 1.1 \times 10^{-7}$

Both at 90% confidence level.

Already starting to become useful in constraining or even ruling out New Physics models.