
7. The Complete Problem 
 
To model a star, we have four differential equations: 
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What are the boundary conditions? 

At centre, r = 0 , m = 0 ,  ! = 0 . 
At surface, r = R
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But an atmosphere has no sharp edge. 
 
Define the outer edge as optical depth ! = 2
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Here T = Teff . 
As r! R
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which is a constant. Integrate the equation of hydrostatic equilibrium, 
dP

dr
= !

Gm r( )

r
2

"dr  

from infinity to R
*
. 

P r = R
*( ) ! g0 "dr

R*

#

$ = g
0

2

3%
 

P r = R
*( ) =

GM
*

R
*

2

2

3

1

!
 

Other outer boundary conditions at r = R
*
: 
T = Teff  
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7.1 Solving the Problem 
Boundary conditions are split between the inner and outer boundaries. Two methods to 
find a solution: 



1. Shooting: start at r = 0 , guess P  and T , integrate outwards, miss outer boundary 
conditions. Tweak P  and T  at r = 0  and try again. Difficult due to T 4  and r!4  
in equations. 

2. Henyey method (relaxation): 
a. Estimate solution at all radii 
b. Calculate by how much the estimate misses the solution. 
c. Correct values at all points using these errors. 
d. Iterate. 

 
7.2 Basic Set 
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Equations are strongly non-linear. Equations 1 and 2 depend on 3 and 4 only if P  is a 
function of T . 
 
7.3 Polytropic Equations of State 
If P  does not depend on T : can solve separately for hydrostatic structure (equations 1 
and 2), and heat flow (2 and 3). 
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Insert into mass equation to find 
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This is a simple second order differential equation: integrate to find the density profile. 
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where n  is the polytropic index. 
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with boundary condition ! = 0  at R = R
*
 and d! / dr = 0  at r = 0 . 

(At r = 0! m r( ) = 0!
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Examples of polytropes: degenerate stars. 

- Relativistic: n = 3  
- Non-relativistic: n = 1.5  

 
A polytrope is fully determined by K ,n,R

*
. 
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(Chandrasekhar) 
 
7.4 A Gaussian Model 
Another way to simply model a star is to adopt some model for the pressure within the 
star, to solve for (1,2) and (3,4) separately. 
 
The equation of hydrostatic equilibrium is 
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At the centre of the star r = 0( ) , 
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The enclosed mass can be approximated as 
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where !
c
 is the central density. Therefore 
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As r! 0 , dP / dr  varies linearly with radius. 
 
Near the surface of the star, !" 0  and m! M
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Based on these arguments, Clayton (1986?) suggested a model with adopts a pressure 
gradient of 
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where a  is some length parameter. 
 
At the outer radius of the star R , take P = 0 . Integrate equation 180 to find 
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To find the other parameters: 
Mass: Integrate !4"r3dP = Gm r( )dm  
Density: integrate mass conservation equation 
Temperature: the ideal gas equation. 
 
For a / R << 1  (true for the sun: 
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7.5 Other Models 
Eddington 
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Assume energy generation in the core only: !  increases inward. !  increases outward. 
Assume 

!" = const =! surface  (186) 
This gives a polytrope of index n = 3 . 



 
Point source model 
All energy generation at r = 0 . Still leads to complicated equations. 
 
Such models are no longer required now that computer models can be designed. 
 
7.6 Real Models 
See diagrams in handouts. 


