
5. Introduction to Gas Dynamics 
(DW Chapter 6) 
 
5.1 Is the ISM a fluid? 
For fluid approximation, 

- Divide the gas into small volumes with size << overall scale of the flow 
pattern. Each small volume must contain many atoms. 

- Represent the contents of each of these volumes dV  by density ! , 
temperature T  (hence pressure P ), and a fluid velocity v . 

o Requires Maxwell distribution of random atomic velocities around 
mean v . 

o Size of volume !x >> " , the mean free path of the atoms. 
Overall condition ! <<< L  

o Atom velocity randomized (relative to flow) before it has traveled a 
significant distance. 

 
See Problem 2.6(a). 
Yes: the ISM is a good fluid. 
 
5.2 Equations of Gas Dymanics 
5.2.1 Conservation of Mass 
Consider a stationary volume dV = unit area ! dx  in the flow direction, with a flow 
passing through it. 
On the first side that the flow encounters, there is P,!,u . On the far side, i.e. after 
distance dx , we have P + dP,! + d!,u + du . Note that u = v

x
. 

Rate of increase of mass in dV =mass in flow – mass out flow. 
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 “Equation of Continuity”. 
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 as an operator. It gives the change with time at a 

point moving with the flow. 

“Lagrangian derivative” written 
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Hence continuity: 
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(in 3D: 
D!
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= " p# $% , where ! "#  is the outflow from fluid volume.) 

 
5.2.2 Conservation of Momentum 
Consider inflow and outflow as before. 
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Cancel terms 
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In 3D: !"P . 
Euler Equation !  Newton II for fluids. 
We must add other forces if needed to the RHS. 
e.g. gravity: 
f = !g  where g  is the local acceleration. f = !"#$ , the gradient of gravitational 

potential. 
e.g. viscosity: 
f = !"2#  (see later) 

 !
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5.2.3 Conservation of Energy 
In general, complicated! 
Consider steady 1D flow. How much energy flows through unit area in time dt ? 
To see, replace right-hand part of flow with piston. 
At t = 0 , we have x = 0 , and u,P,! . 
At time t = dt , we have x = udt , and u,P,!  again. 
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This is the energy in the gas that has flowed past x = 0  in time dt . 
e = internal energy per unit mass = specific internal energy. 
But: we’ve missed out part of the energy flow. We’ve also done work on the piston. 
This is PdV = Pudt . 

 total energy flow per second 
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e +
P

!
= h  the “specific enthalpy”. 

Since !u  is conserved in steady 1D flow, h +
1

2
u
2
+ ! = "  is also conserved. 

“Bernoulli Constant” or “stagnation enthalpy”. 
In steady 3D flow, !  is conserved along streamlines. 
Full energy equation requires us to account for radiation, heat conduction, pressure 
fluctuations, etc. 



Here we consider two special gases: 
(a) Adiabatic Flow 
Literally no heat flow, but in fluid dynamics means specific entropy s  is constant for 
each fluid element. 
Then PV !

= const.   P = k s( )!"  
(!  is the ratio of specific heats). 

NB for perfect gas, e =
1

! "1

P

#
. Hence h =

!

! "1

P

#
 

If all elements have same s, k s( )  is constant throughout flow. “isentropic flow”. 

! = 5
3

 for monatomic gases. 
 
(b) Isothermal Flow 
Often heat flow via emission and absorption of radiation is important, i.e. 
photoionized gas. 
Then T  is set by radiative heating and cooling. 
For optically-emitting gas, forbidden-line thermostat keeps T ! const.  throughout 
flow. 
 
5.2.4 Equation of State 
We use ideal gas law: 
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I indexes particle species. 
 P ! n

H
kT  for neutral gas, P = np + ne( )kT = 2nkT  for ionized gas. 

(ignoring H
e
.) 

Adiabatic law P = k!"  is a second equation of state. 

NB: for isothermal gas, P ! n =
"

m
. Effectively ! = 1. 

 
5.3 Sound Waves 
Consider small fluctuations in the gas around equilibrium values P
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Linearize gas equations: 
Continuity: 
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Euler: 
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Wave equation, with wave speed (of sound): 
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(For isothermal gas, put ! = 1. 
 
NB: 

- Wave moves at plus or minus the sound speed ±c
s
 relative to the underlying 

fluid velocity u
0

. 
- c

s
~ speed of molecules / atoms in gas 

- If we convert all the gas’ enthalpy into kinetic energy, we get 
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(of course this cools gas to T = 0 , c
s
= 0 ) 

i.e. pressure forces can create maximum speeds of order the original sound 
speed 

- If flow changes slowly compared to the time it takes sound waes to cross a 
region, then the pressure has time to equalize across the whole region.  
P ! const.  

 
5.4 Transport Properties 
“Perfect fluid” has mean free path ! = 0 . 
Effects associated with finite !  “transport properties”. 

- Diffusion 
- Thermal and electrical conductivity 
- Viscosity !  internal friction in fluid. 

 

Consider a shear flow. A set of layers with separation du , gradient 
du

dy
. Take 3 

layers: u + du , u  and u ! du . 
Fast particles from the upper layer diffuse into the middle layer, giving a forward 
force. But slow particles from the lower layer contribute equal and opposite retarding 
force. So there is no net viscous force when you have a uniform gradient of velocity. 



 viscous forces depend on the second derivative of the velocity: 
fvisc = !"2

v  
where the coefficient of viscosity ! " 2#v$ , where v  Is the mean particle speed. 
(See D&W chapter 6.1.4) 
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5.5 Dimensionless Parameters 
Flow pattern determined by dimensionless parameters of flow, including: 

Mach Number M =
u

c
s
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Reynold’s Number Re =
!vL
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Where L is characteristic length scale of flow. The Reynold’s number gives us the 
ratio of the pressure forces to the viscous forces. 
In astrophysical flows, Re >> 1 . This suggests that viscous forces should be relatively 
unimportant in astrophysics – we will see later that this is not necessarily so. 
 
5.6 Shocks 

Sound speed = c
s
=
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For adiabatic flows, P ! "#   c
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Consider a wave of finite amplitude. 

 
the peak tends to catch up with the trough. 
Shock wave: sudden discontinuity (thickness ~ ! ) between fast-moving high 
pressure gas and slower gas ahead. The shock is supersonic with respect to c

s
 in the 

gas ahead. 
Shocks are almost inevitable in supersonic flows, or equivalently in flows with large 
pressure gradients. 
 
5.6.1 Jump conditions 
In a frame moving with the shock: 



 
Viscosity and thermal conduction at the shock heats and compresses the upstream gas, 
increasing entropy. But conservation laws still apply, with the special case of steady 
flow around the shock. 
Mass flow: 
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“Shock Jump Conditions” aka “Rankine-Huyoniot Conditions” 
From these equations and the condition that entropy is higher on the downstream side, 
we can solve for P

1
, u

1
, !

1
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0
, u
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, !

0
 (or vice versa). 

 but tedious in general. See DW 6.3.3. 
NB: the conditions do not depend on details of viscosity etc. at the shock. The shock 
thickness automatically adjusts to satisfy the global conservation laws. 
 
5.6.2 Strong Shocks 
The strength of the shock is fixed by the upstream Mach number.  
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 between these two equations, and using (1): 
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For monatomic gas ! = 5
3

, !1
!
0

= 4 . 

This is the condition for an adiabatic gas, i.e. there is no heat flow from one part of 
the gas to the other. This is broken in some cases in the ISM, hence is not always 
applicable. 
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Downstream Mach number: 
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The flow behind the shock is subsonic in the frame in which the shock is not moving. 

M
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 for a strong shock. 

 
 



5.6.3 Frames of Reference 
Often better to think of the shock as moving through initially stationary gas. Then: 
Speed of shock V
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Shocked gas moves forward. 
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5.7 Shocked Gas 
Post-shock H is collisionally ionized if T ! 4 "10

4
k . i.e. V

s
! 50km s

"1 . 
Faster shocks give highly ionized metals, e.g. OIII  OIV  OVI etc. as T increases. 
Above 108 k  V

s
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"1( ) , all the atoms are fully ionized. 
 
Shock-heated gas cools by radiation. 
Emitted power per unit volume = 4! j "( )d"
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This !  is called the cooling function, and is nothing to do with the mean free path. 

 
The cooling function has !
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Cooling most effective at ~ 105 k . 
Gas cools at ~ constant pressure  n !  as T ! . Hence n2!  increases as the gas 
cools. 
Hence cooling very effective for 10 !V
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Cooling time tc !
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(Enthalpy not internal energy as constant pressure not volume.) 
If cooling length = u

1
t
c
<< scale of the flow, then the gas will rapidly cool until 

around ~ 104 k . 
 



5.8 “Isothermal Shocks” 
Shock with effective cooling. 

 
The shock is adiabatic. 
If cooling zone is thin enough, count as part of the shock transition. 
New jump conditions: 
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For isothermal gas; 
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Positive solution: u
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This will no longer peak at 4 as it did in adiabatic shocks, but will keep on increasing 
without limit. 
In rest frame of the upstream gas: 
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. “snowplow” effect. 



i.e. the shocked gas moves along with shock as a thin layer of high density “swept up” 
gas. 
NB: P
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We have 100% conversion of ram pressure to thermal pressure (unlike adiabatic, 
where we had ¾). 


