5. Beta Decay

The process allows the nucleus to reach its most stable proton-neutron ratio.

Pisure $3_{.} 18$ Mass chains for $A=125$ and $A=126$. For $A=125$, nota how the energy difterences between neightoring isotopes increase as we go firther from the stable member at the energy minimum. For $A=126$, note the ented of the pairing term; in particular, ${ }^{128} 1$ can decay in elther direction, and it is energedsally possible for ${ }^{128}$ Te to decay direcily to ${ }^{128} \mathrm{Xe}$ by the process known as deuble β decay.

On the left side, β^{-}decay $n \rightarrow p+\beta^{-}+\bar{v}_{e} \cdot Q_{\beta^{-}}$. On the right side, either β^{+}or electron capture ε, with Q_{ε}. All particles have spin $1 / 2$. The energy, momentum (and parity) is conserved in the decay.

5.1 Q Values

(Kinetic energy released)
$Q_{\beta^{-}}=\left(M_{\text {parent }}-M_{\text {daughter }}\right) c^{2}$
assuming that the neutrino has no mass (at the least, this is a v . good approximation)
$Q_{\text {electron capture }}$ is the same.
$Q_{\beta^{+}}=Q_{\text {electron capture }}-2 m_{e} c^{2}$
This is due to the decay products being the daughter atom + a spare e^{-}, plus a positron. $2 m_{e} c^{2}=1.022 \mathrm{MeV}$.
Q is shared between decay products consistent with momentum conservation.
Conservation of momentum means $\underline{P_{m}}+\underline{P_{\beta}}+\underline{P_{v}}=\underline{0}$.

The spectrum of the β-particle (kinetic energy of β) is continuous up to a maximum of Q_{β}.

End point is at Q_{β}.
The shape is determined by the density of the final states plus Coulomb effects.
The end point detail allows a determination of the neutrino mass. If the neutrino has mass, then the end point will be just before Q_{β}. The difference between the end point and Q_{β} will be $m_{v} c^{2}$.
Experiments on ${ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\beta^{-}+v_{e}$ $Q=18,600$
Limits $m_{v} c^{2}<60 \mathrm{eV}$.

5.2 Fermi Theory of β Decay

The Fermi theory states that the decay rate λ is given by "Fermi's Golden Rule".
$\lambda=\frac{2 \pi}{\hbar}\left|\int \Psi_{f} * V_{\beta} \Psi_{i} d V\right|^{2} \rho\left(E_{F}\right)$
where $\rho\left(E_{F}\right)$ is the density of final states, and the integral is called the "overlap integral", and involves the β-decay operator connecting initial and final states. This is particularly large when the decaying nucleon keeps the same orbital / wavefunction these are called "superallowed" transitions.
The shape of the electron kinetic energy spectrum $\left(T_{e}\right)$ (before Coulomb correction) is found by considering the density of states $N\left(T_{e}\right)$ in an interval $T_{e} \rightarrow T_{e}+d T_{e}$. Krane shows:
$N\left(T_{e}\right)=$ const. $\times \sqrt{T_{e}^{2}+2 T_{e} m_{e} c^{2}}\left(Q_{\beta}-T_{e}\right)^{2}\left(T_{e}+m_{e} c^{2}\right)$
where $T_{e}+T_{v}=Q_{\beta}$.
This vanishes at $T_{e}=0$, and at $T_{e}=Q_{\beta}$.
NB: if $m_{e}=0, N\left(T_{e}\right) \rightarrow$ const $\times T_{e}^{2} T_{\tau}^{2}$.

Clearly β-decay has a strong Q_{β} dependence. Decay rate is roughly $\propto Q_{\beta}{ }^{5}$

$$
\left.+\left(\nu P_{1 / 2}\right) \pi P_{1 / 2}\right)
$$

$$
+\left(\pi P_{1 / 2}\right)^{2}
$$

ft-values

If the energy dependence on the half-life is taken into account, then a comparative half life of " ft -value" can be deduced, which depends on the inverse of the matrix element $\left|\int \psi_{f} * V_{\beta} \psi_{I} d V\right|^{2} . \tau=\frac{1}{\lambda}$. Since ft values range from $10^{3} \rightarrow 10^{20} s$, then $\log f t$ is normally quoted in literature. $\log f t=3 \rightarrow 4$ for a superallowed transition.

5.3 Angular momentum rules

Remember alpha decay involving $\ell \hbar$: the α is emitted a distance $\frac{\ell \hbar}{\sqrt{2 m_{\alpha E_{\alpha}}}}$ from the nuclear centre. Since $m_{e}, m_{v} \ll m_{\alpha}$, it is much more difficult for e^{-}or \bar{v}_{e} to carry away orbital angular momentum. (If $E_{\beta} \approx 5 \mathrm{MeV}$, then $r \approx 100 \mathrm{fm}$ for $\ell=1$). We thus have these classifications:
$\ell=0$ "allowed" decay
$\ell=1$ "first forbidden" decay
$\ell=2$ "second forbidden" decay.
"Forbidden" decays have much slower decay rates, hence longer half-lives.

Allowed Decays

$\ell=0$, therefore there is no parity change between the initial and final states $\left((-1)^{\ell}\right)$.
There are two types of allowed decay depending on the total intrinsic spin carried away by the electron $(\underline{s}=\underline{1 / 2})$ and the neutrino $(\underline{s}=\underline{1 / 2})$.

Fermi type

$\underline{s}=\underline{1 / 2}+\underline{1 / 2}=\underline{0}$, i.e. opposite spin directions.
Angular momentum is conserved. $\underline{I_{i}}=I_{f}+\underline{s}+\underline{\ell}$. Here, $\underline{\ell}=0$, and $\underline{s}=0$. So
$\Delta I=I_{i}-I_{f}=0$.
Gamow-Teller (GT) Type
$\underline{s}=\underline{1 / 2}+\underline{1 / 2}=\underline{1}$, i.e. parallel spin directions.
Now the conservation of angular momentum leads to a vector triangle through
$\underline{I_{i}}=I_{f}+\underline{s}$, where $\underline{s}=\underline{1}$.
$\Delta I=I_{i}-I_{f}=0, \pm 1$.
But not $I_{i}=0 \rightarrow I_{f}=0$.
Classification of most fundamental process:
$n \rightarrow p+e^{-}+\bar{v}_{e}$
$I^{\pi}: \underline{\frac{1}{2}}^{+} \rightarrow \underline{\frac{1}{2}}^{+}+\frac{1}{\underline{2}}+\frac{1}{\underline{2}}$
So $\underline{s}=\underline{0}$ or $\underline{1}$ is possible. There is no parity change between the initial and final states.
This satisfies both Fermi and Gamow-Teller rules.
Therefore mixed transition. Experimentally, 18\% Fermi, 82\% G-T.

First Forbidden

$\ell=1 \rightarrow$ parity change between the initial and final nuclear states. We now have:
$\underline{I_{i}}=\underline{I_{f}}+\underset{=0,1}{\underline{s}}+\underset{=1}{\ell}$
Fermi $1^{\text {st }}$ forbidden transition:
$s=0 . \Delta I=0, \pm 1 \quad(\ell=1)$
G-T $1^{\text {st }}$ forbitten transition:
$s=1 . \Delta I=0, \pm 1, \pm 2$
plus parity change in both cases.
Examples of classifications
${ }^{14} O\left(0^{+}\right) \rightarrow{ }^{14} N\left(0^{+}\right)$
Pure Fermi allowed (actually "superallowed").
${ }^{14} O\left(0^{+}\right) \rightarrow{ }^{14} N\left(1^{+}\right)$
Pure G-T allowed.
${ }^{115} I n\left(\frac{9^{+}}{2}\right) \rightarrow{ }^{115} S n\left(\frac{1^{+}}{2}\right)$
$\Delta I=4$, no parity change: $\ell=$ even.
Therefore $\ell=4$. " $4^{\text {th }}$ forbidden", hence why it is regarded as stable.
$T_{1 / 2}\left({ }^{115} I n\right)=4 \times 10^{14}$ years.
If it were $9 / 2^{-} \rightarrow 1 / 2^{+}$, then it would be $\ell=3, s=1$. But it is not.

5.4 Parity Violation in β-decay

Most laws of physics are invariant under the parity operation ($\underline{r} \rightarrow-\underline{r}$ "a reflection through the origin", i.e. reversing x, y and z).
If the Hamiltonian $\left(E_{k}+E_{p}\right)$ is invariant under the parity operation, then the eigenstates have "good parity". $\Psi(-\underline{r})= \pm \psi(\underline{r})$, where \pm is through the parity quantum number.

Parity operation on vectors

Position vector $\underline{r} \rightarrow-\underline{r}$.
Hence:
Velocity $\underline{v} \rightarrow-\underline{v}(\underline{\dot{r}})$
Force $\underline{F} \rightarrow-\underline{F}(m \ddot{\ddot{r}})$
Electric field $\underline{E} \rightarrow-\underline{E}\left(-\frac{d V}{d x}\right)$.
These are called "true" or polar vectors.
Angular momentum $\underline{I} \rightarrow+\underline{I}(\underline{r} \times \underline{p})$
Torque $\underline{\tau} \rightarrow+\underline{\tau}(\underline{r} \times \underline{F})$
Magnetic field $\underline{B} \rightarrow+\underline{B}(\underline{I} \underline{\ell} \times \underline{\hat{\hat{r}}})$
These are called "pseudo" or 'axial" vectors.
${ }^{60} \mathrm{Cs} 5^{+} \rightarrow$ (beta decay) 4^{+}, which then decays down to ${ }^{60} \mathrm{Ni}$ through gamma decay. Nuclei are then polarized in B-field. It was found that there was a forwards-backwards asymmetry (more were emitted in the opposite direction to the magnetic field than in the same direction).
After a parity operation, the B-field and the polarity are in the same direction. However, the forwards-backwards asymmetry was reversed, i.e. more were emitted in the same direction than the opposite. This is not observed in nature, which means that nature has a handedness.
Hence it is possible to define "left" to an extraterrestrial civilization.
NB: parity of initial and final states is conserved here; the parity violation is in the physicality's of the resulting system.

The nuclear force itself must violate parity.

$$
V_{\text {nuclear }}=V_{\text {strong }}+V_{e / m}+V_{\text {weak }}
$$

The weak part of this is a very small part of the force, but it violates parity.
\rightarrow nuclear wave functions have a tiny contribution of the "wrong" parity $\left(10^{-7}\right)$ but in practice is hardly ever seen. This is generally extremely difficult to detect, except in some special circumstances.

